
Accurate Hyperbolic Tangent Computation

Nelson H. F. Beebe
Center for Scientific Computing

Department of Mathematics
University of Utah

Salt Lake City, UT 84112
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

Internet: beebe@math.utah.edu

20 April 1993
Version 1.07

Abstract

These notes for Mathematics 119 describe the Cody-Waite algorithm for ac-
curate computation of the hyperbolic tangent, one of the simpler elementary
functions.

Contents

1 Introduction 1

2 The plan of attack 1

3 Properties of the hyperbolic tangent 1

4 Identifying computational regions 3
4.1 Finding xsmall . 3
4.2 Finding xmedium . 4
4.3 Finding xlarge . 5
4.4 The rational polynomial . 6

5 Putting it all together 7

6 Accuracy of the tanh() computation 8

7 Testing the implementation of tanh() 9

List of Figures

1 Hyperbolic tangent, tanh(x). 2
2 Computational regions for evaluating tanh(x). 4
3 Hyperbolic cosecant, csch(x). 10

List of Tables

1 Expected errors in polynomial evaluation of tanh(x). 8
2 Relative errors in tanh(x) on Convex C220 (ConvexOS 9.0). . . . 15
3 Relative errors in tanh(x) on DEC MicroVAX 3100 (VMS 5.4). . 15
4 Relative errors in tanh(x) on Hewlett-Packard 9000/720 (HP-UX

A.B8.05). 15
5 Relative errors in tanh(x) on IBM 3090 (AIX 370). 15
6 Relative errors in tanh(x) on IBM RS/6000 (AIX 3.1). 16
7 Relative errors in tanh(x) on MIPS RC3230 (RISC/os 4.52). . . 16
8 Relative errors in tanh(x) on NeXT (Motorola 68040, Mach 2.1). 16
9 Relative errors in tanh(x) on Stardent 1520 (OS 2.2). 16
10 Effect of rounding direction on maximum relative error in tanh(x)

on Sun 3 (SunOS 4.1.1, Motorola 68881 floating-point). 17
11 Effect of rounding direction on maximum relative error in tanh(x)

on Sun 386i (SunOS 4.0.2, Intel 387 floating-point). 17
12 Effect of rounding direction on maximum relative error in tanh(x)

on Sun SPARCstation (SunOS 4.1.1, SPARC floating-point). . . 18

i

1 Introduction

The classic books for the computation of elementary functions, such as those
defined in the Fortran and C languages, are those by Cody and Waite [2] for
basic algorithms, and Hart et al [3] for polynomial approximations.

In this report, we shall describe how to compute the hyperbolic tangent,
normally available in Fortran as the functions tanh() and dtanh(), and in C
as the double precision function tanh().

In a previous report [1], I have shown how the square root function can be
computed accurately and rapidly, and then tested using the ELEFUNT test
package developed by Cody and Waite. Familiarity with the material in that
report will be helpful in following the developments here.

2 The plan of attack

Computation of the elementary functions is usually reduced to the following
steps:

1. Use mathematical properties of the function to reduce the range of argu-
ments that must be considered.

2. On the interval for which computation of the function is necessary, identify
regions where different algorithms may be appropriate.

3. Given an argument, x, reduce it to the range for which computations
are done, identify the region in which it lies, and apply the appropriate
algorithm to compute it.

4. Compute the function value for the full range from the reduced-range value
just computed.

In the third step, the function value may be approximated by a low-accuracy
polynomial, and it will be necessary to apply iterative refinement to bring it up
to full accuracy; that was the case for the square root computation described in
[1].

3 Properties of the hyperbolic tangent

The hyperbolic functions have properties that resemble those of the trigonomet-
ric functions, and consequently, they have similar names. Here are definitions
of the three basic hyperbolic functions:

sinh(x) = (exp(x)− exp(−x))/2
cosh(x) = (exp(x) + exp(−x))/2

1

tanh(x) = sinh(x)/ cosh(x)
= (exp(x)− exp(−x))/(exp(x) + exp(−x)) (1)

Three auxiliary functions are sometimes used:

csch(x) = 1/ sinh(x)
sech(x) = 1/ cosh(x)
coth(x) = 1/ tanh(x)

The following additional relations for the hyperbolic tangent, and for the dou-
bled argument, will be useful to us:

tanh(x) = − tanh(−x) (2)
tanh(x) = x− x3/3 + (2/15)x5 + · · · (|x| < π/2) (3)

d tanh(x)/dx = sech(x)2 (4)
sinh(2x) = 2 sinh(x) cosh(x) (5)

While sinh(x) and cosh(x) are unbounded as x→∞, tanh(x) behaves very
nicely. For x large in absolute value, | tanh(x)| → 1, and for x small in absolute
value, tanh(x)→ x. The graph of tanh(x) is sketched in Figure 1.

x

tanh(x)

+1

−1

x = −20 x = +20

Figure 1: Hyperbolic tangent, tanh(x).

The tanh() function is useful as a data compression function, since it squashes
the interval −∞ ≤ x ≤ ∞ onto −1 ≤ x ≤ 1, with relatively little distortion

2

for small x. For example, in preparing a mesh plot of a function with peaks of
wildly-different heights, it may be useful to first take the hyperbolic tangent of
the function; big peaks will still be big, but the details of the smaller peaks will
be preserved.

4 Identifying computational regions

Because of equation (2) in the last section, we need only concern ourselves with
positive x; for negative x, we can compute the function for |x|, and then just
flip the sign of the computed result.

Because tanh(x) is nicely bounded for all real x, we need take no special
precautions for the special case of x = ∞. Indeed, for relatively modest x, say
x ≥ xlarge, we can just return tanh(x) = 1; we will shortly show just where we
can do this.

For somewhat smaller x values in the range xmedium ≤ x < xlarge, we can
reduce equation (1) by first multiplying through by exp(x), then adding and
subtracting 2 in the numerator to obtain

tanh(x) = 1− 2
1 + exp(2x)

In the implementation, we will actually compute this as

temp = 0.5− 1
1 + exp(2x)

(6)

tanh(x) = temp + temp (7)

which avoids loss of leading bits on machines that have wobbling precision from
bases larger than B = 2 (e.g. IBM mainframe).

For even smaller x in xsmall ≤ x < xmedium, the subtraction in the last
equation causes accuracy loss, so we switch to an accurate rational polynomial
approximation developed by Cody and Waite.

Finally, for x in 0 ≤ x < xsmall, we will use the Taylor’s series expansion,
equation (3), truncated to the first term, tanh(x) = x.

In summary, our computational regions are illustrated in the sketch in Fig-
ure 2.

In the next three sections, we show how to determine suitable values for the
boundary values: xsmall, xmedium, and xlarge.

4.1 Finding xsmall

Rewrite the Taylor’s series, equation (3), as

tanh(x) = x(1− x2/3 + (2/15)x4 + · · ·) (|x| < π/2)

3

tanh(x) =

x
0

x

xsmall

rational
polynomial

xmedium

1− 2
1+exp(2x)

xlarge

1

Figure 2: Computational regions for evaluating tanh(x).

and observe that as long as 1 − x2/3 = 1 to machine precision, then we can
truncate the series to its leading term. Now, for floating-point base B with t
fractional digits, the upper bound on x2/3 is B−t−1. To see this, consider the
simple case B = 2 and t = 2. The representable numbers are then 0.002, 0.012,
0.102, and 0.112; the value 0.0012, or B−3, can be added to them without effect,
since we are keeping only t = 2 digits. Thus, we conclude that

x2
small/3 = B−t−1

xsmall =
√

3B(−t−1)/2

For IEEE arithmetic, we have B = 2, and t = 23 (single precision) or t = 53
(double precision). This gives

xsmall =
√

3× 2−12

= 4.22863 96669 16204 32990E-04 (single precision)

xsmall =
√

3× 2−27

= 1.29047 84139 75892 43466D-08 (double precision)

4.2 Finding xmedium

The value xmedium is the point at which the formula in equation (6) begins to
suffer loss of bits through the subtraction. This will happen for all x such that

2
1 + exp(2x)

≥ 1/B

To see why, consider again the simple case B = 2 and t = 2. The value 1 can be
represented as 1.02, or with infinite precision, as 0.11111 . . .2. Loss of leading
bits happens if we subtract any value of the form 0.1x2. There is no loss if we
subtract values of the form 0.0x2. That is, loss happens when we subtract any
value at least as large as 0.102, which is just 1/B. Solving for x, we find

2B ≥ 1 + exp(2x)

4

(2B − 1) ≥ exp(2x)
ln(2B − 1) ≥ 2x

ln(2B − 1)/2 ≥ x

from which we have the result we seek:

xmedium = ln(2B − 1)/2

Observe that this result is independent of the precision, t. For IEEE arithmetic
with base B = 2, we find

xmedium = ln(3)/2
= 0.54930 61443 34054 84570 D+00

4.3 Finding xlarge

The last region boundary, xlarge, is determined by asking: At what point will
the second term in equation (6) be negligible relative to the first term? As in
the determination of xsmall, this will happen when

2
1 + exp(2x)

< B−t−1

In this region, x is large, so exp(2x)� 1. We therefore drop the 1, and write

2
exp(2x)

< B−t−1

2Bt+1 < exp(2x)
ln(2Bt+1) < 2x

(ln(2) + (t+ 1) ln(B))/2 < x

For base B = 2, this simplifies to

(t+ 2) ln(2)/2 < x

from which we find for IEEE arithmetic

xlarge = 12.5 ln(2)
= 8.66433 97569 99316 36772 E+00 (single precision)

xlarge = 27.5 ln(2)
= 19.06154 74653 98496 00897 D+00 (double precision)

5

4.4 The rational polynomial

In the region xsmall ≤ x < xmedium, Cody and Waite developed several rational
polynomial approximations, tanh(x) ≈ x + xR(x), of varying accuracy. For
t ≤ 24, which is adequate for IEEE single precision, they use

g = x2

R(x) = gP (g)/Q(g)
P (g) = p0 + p1g

Q(g) = q0 + q1g

where the coefficients are as follows:

p0 = −0.82377 28127 E+00
p1 = −0.38310 10665 E-02
q0 = 0.24713 19654 E+01
q1 = 1.00000 00000 E+00

For 49 ≤ t ≤ 60, corresponding to the double-precision IEEE case, they use

g = x2

R(x) = gP (g)/Q(g)
P (g) = p0 + p1g + p2g

2

Q(g) = q0 + q1g + q2g
2 + q3g

3

where the coefficients are as follows:

p0 = −0.16134 11902 39962 28053 D+04
p1 = −0.99225 92967 22360 83313 D+02
p2 = −0.96437 49277 72254 69787 D+00
q0 = 0.48402 35707 19886 88686 D+04
q1 = 0.22337 72071 89623 12926 D+04
q2 = 0.11274 47438 05349 49335 D+03
q3 = 1.00000 00000 00000 00000 D+00

By using Horner’s rule for polynomial evaluation, and observing that the
high-order coefficient in Q(g) is exactly one, we can simplify the generation of
R(x) as shown in the following code extracts:

* Single precision
g = x * x
R = g * (p(1) * g + p(0)) / (g + q(0))
tanh = x + x * R

6

* Double precision
g = x * x
R = g * ((p(2) * g + p(1)) * g + p(0)) /

& (((g + q(2))*g + q(1)) * g + q(0))
dtanh = x + x * R

It is important not to try to economize by rewriting the last expression as x(1 +
R); that introduces accuracy loss on machines with wobbling precision from
floating-point bases larger than B = 2.

Cody and Waite’s rational form requires four multiplications, three addi-
tions, and one division in single precision, and seven multiplications, six addi-
tions, and one division in double precision.

You might wonder, why do we not just use the Taylor’s series in this region?
Here is the explanation.

The Taylor’s series terms drop by powers of two, and convergence will be
slowest for the largest x value in the region, namely x = xmedium ≈ 0.55. That
number is about 1/2, so each successive term in the Taylor’s series will be about
1/4 the size of the preceding term. That is, each term will have about 2 more
leading zero bits than the previous term.

With t = 53 (IEEE double precision), we will have to sum about 53/2 = 27
terms of the series before it has converged satisfactorily. Even if we use Horner’s
nested multiplication form, this will take about 30 multiplications and 30 addi-
tions, which is about five times more expensive than the rational approximation.

Also, recall that each arithmetic operation potentially introduces an error of
about 0.5 base-B digit in the computed result, and that coupled with the fact
that the Taylor’s series terms alternate in sign, while the Cody-Waite polyno-
mials have uniform sign, means that the Taylor’s series will in practice be less
accurate.

5 Putting it all together

We now have all of the pieces that we need to develop a program for the evalu-
ation of the hyperbolic tangent.

Our program will first check for the case of a negative argument, so that
we can use the inversion formula, equation (2), to allow computation only for
non-negative x. Then we need to check for the possibility that x is an IEEE
NaN, in which case, we must generate a run-time NaN that the caller can trap.
Following that, we simply fill in the remaining branches of a block-IF statement
with the code for each of the four regions we identified.

For the time being, this job is being left as an assignment for the class to
complete.

7

6 Accuracy of the tanh() computation

In the regions 0 ≤ x < xsmall and xlarge ≤ x ≤ ∞, tanh() reduces to either x or
1, and so may be regarded as exact.

In the rational polynomial region, xsmall ≤ x < xmedium, accuracy is limited
by the accuracy of the rational polynomial. Cody and Waite’s approximation
is good to t = 60 bits, which is 7 more than we have in IEEE double precision,
so in that region too the error is expected to be quite small, arising only from
the few arithmetic operations needed to construct the rational approximation.

With the default rounding of IEEE 754 arithmetic, the average error of a
binary floating-point operation is zero bits, and the maximum error is 0.5 bits.
With truncating arithmetic, such as that of IBM mainframes, the average error
is 0.5 bits, and the maximum error, 1 bit. From the code fragments on page 6,
the single precision computation takes eight operations, and the double-precision
computation, fourteen operations. The expected errors are summarized in Ta-
ble 1. The differences between rounding and truncating arithmetic are striking
evidence of why rounding is generally preferred.

Table 1: Expected errors in polynomial evaluation of tanh(x).

precision arithmetic average error maximum error
(bits) (bits)

single rounding 0 4
truncating 4 8

double rounding 0 7
truncating 7 14

The third region, xmedium ≤ x < xlarge, is the questionable one. Here, we
use the native Fortran exp() or dexp() functions, or the C exp() function, for
the evaluation of exp(2x); what happens if those functions are inaccurate?

The discussion in [1] showed that the relative error in the computed function,
dy/y, is related to the error in the function argument, dx/x, by

dy

y
= x

f ′(x)
f(x)

dx

x

where xf ′(x)/f(x) is a magnification factor. This relation is derived purely from
calculus; it is independent of the precision with which we compute numerical
approximations to the function.

For the case of the square root function, the magnification factor is a con-
stant, 1/2, so argument errors are diminished in the function value.

On the other hand, for the exp(x) function, the magnification factor is x,
which says that for large x, the computed exponential function will have a large

8

relative error, and the only way that error can be reduced is to use higher
precision. That may be difficult if we are already using the highest-available
floating-point precision; use of a multiple-precision software floating-point emu-
lator would be necessary, and slow. With existing packages, software emulation
of floating-point arithmetic is usually about 100 times slower than hardware
arithmetic.

Now, what about our tanh(x) function? We want to find dy/y in terms of
the relative error in exp(2x). Let z = exp(2x), so that

dz/dx = 2 exp(2x)
= 2z

dz/z = 2dx

Then from equation (4) and equation (5),

d tanh(x)/dx = 1/ cosh(x)2

d tanh(x)/ tanh(x) = (1/(cosh(x)2 tanh(x)))dx
= (cosh(x)/(cosh(x)2 sinh(x)))dx
= (1/(sinh(x) cosh(x)))dx
= (2/(2 sinh(x) cosh(x)))dx
= (2/ sinh(2x))dx
= (1/ sinh(2x))dz/z
= csch(2x)dz/z

The last equation is the result we are seeking: the magnification of the relative
error in tanh(x) from the relative error in the exponential function, dz/z, is
csch(2x).

The csch(x) function looks something like the sketch in Figure 3. Since
csch(x) rises in absolute value as the origin is approached, the largest magnifi-
cation factor will happen for the left end of the interval, x = xmedium = 0.55.
At that point, csch(2 × 0.55) = 0.75; at x = 2, csch(4) = 0.036; at x = 5,
csch(10) = 9.0D-05, and at the right-end of the interval, csch(38.1) = 5.7D-17.

In other words, the magnification factor is never larger than 1, and falls
very rapidly toward zero. Thus, over most of this range, modest errors in the
exponential function will have little effect on the computed result.

In summary, we expect that our implementation of tanh() should be accurate
over the entire real axis with an average error of only 1 or 2 bits in the last place.

7 Testing the implementation of tanh()
The Cody-Waite ELEFUNT package contains test programs that can be used
to test the accuracy of our tanh(x) implementation in both single and double
precision.

9

x

csch(x)

+5

−5

x = −5 x = +5

Figure 3: Hyperbolic cosecant, csch(x).

Those programs expect to test the built-in Fortran functions, tanh() and
dtanh(), or for the C version, tanh(). If we wish to use them to test our For-
tran implementation of these functions, we need to make a minor modification
to inform the Fortran compiler that references to tanh() and dtanh() are to
private versions of those routines. In the single-precision test program, we need
to insert the statements

REAL TANH
EXTERNAL TANH

and in the double-precision test program, we need to add

DOUBLE PRECISION DTANH
EXTERNAL DTANH

This will have already been done in the test programs supplied to the class.
No changes are required in the C version of the test program, because the C
language does not have intrinsic functions that are treated specially by the
compiler.

Here is the output of the test program for the Fortran dtanh() on the Sun
4 (SunOS 4.0.3):

TEST OF DTANH(X) VS (DTANH(X-1/8)+DTANH(1/8))/(1+DTANH(X-1/8)DTANH(1/8))

10

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL

(0.1250D+00, 0.5493D+00)

DTANH(X) WAS LARGER 633 TIMES,

AGREED 839 TIMES, AND

WAS SMALLER 528 TIMES.

THERE ARE 53 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER

THE MAXIMUM RELATIVE ERROR OF 0.4867D-15 = 2 ** -50.87

OCCURRED FOR X = 0.356570D+00

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 2.13

THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.1430D-15 = 2 ** -52.64

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.36

TEST OF DTANH(X) VS (DTANH(X-1/8)+DTANH(1/8))/(1+DTANH(X-1/8)DTANH(1/8))

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL

(0.6743D+00, 0.1941D+02)

DTANH(X) WAS LARGER 575 TIMES,

AGREED 933 TIMES, AND

WAS SMALLER 492 TIMES.

THERE ARE 53 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER

THE MAXIMUM RELATIVE ERROR OF 0.3249D-15 = 2 ** -51.45

OCCURRED FOR X = 0.835594D+00

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.55

THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.9295D-16 = 2 ** -53.26

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

SPECIAL TESTS

11

THE IDENTITY DTANH(-X) = -DTANH(X) WILL BE TESTED.

X F(X) + F(-X)

0.5556857D-01 0.00000000000000000D+00

0.2588943D+00 0.00000000000000000D+00

0.2233350D+00 0.00000000000000000D+00

0.6093917D+00 0.00000000000000000D+00

0.7458729D+00 0.00000000000000000D+00

THE IDENTITY DTANH(X) = X , X SMALL, WILL BE TESTED.

X X - F(X)

0.2929164D-16 0.00000000000000000D+00

0.1464582D-16 0.00000000000000000D+00

0.7322910D-17 0.00000000000000000D+00

0.3661455D-17 0.00000000000000000D+00

0.1830728D-17 0.00000000000000000D+00

THE IDENTITY DTANH(X) = 1 , X LARGE, WILL BE TESTED.

X 1 - F(X)

0.1940812D+02 0.00000000000000000D+00

0.2340812D+02 0.00000000000000000D+00

0.2740812D+02 0.00000000000000000D+00

0.3140812D+02 0.00000000000000000D+00

0.3540812D+02 0.00000000000000000D+00

TEST OF UNDERFLOW FOR VERY SMALL ARGUMENT.

DTANH(0.331389-242) = 0.331389-242

12

THE FUNCTION DTANH WILL BE CALLED WITH THE ARGUMENTInf

DTANH(Inf) = 0.100000D+01

THE FUNCTION DTANH WILL BE CALLED WITH THE ARGUMENT 0.4940656-323

DTANH(0.494066-323) = 0.494066-323

THE FUNCTION DTANH WILL BE CALLED WITH THE ARGUMENT 0.0000000D+00

DTANH(0.000000D+00) = 0.000000D+00

THIS CONCLUDES THE TESTS

The student implementation of this function should be able to get very
similar results; the author’s actually did slightly better than the Sun dtanh().

The Sun implementation of Fortran provides a run-time library function
that can control the IEEE 754 rounding direction. By the simple addition of
the statements

character*1 out
integer ieeer, ieee_flags
ieeer = ieee_flags (’set’, ’direction’, ’tozero’, out)
if (ieeer .ne. 0) print *,’ieee_flags() error return’

to the beginning of the test program, the calculations can be performed with
rounding to zero, that is, truncation. The ’tozero’ argument can be changed
to ’positive’ for rounding upward to +∞, to ’negative’ for rounding upward
to −∞, and to ’nearest’ for the default rounding.

A comparison of the measured maximum relative error bit losses for each of
these choices is given in Tables 2–12 for several different architectures.

Although the effect of truncating arithmetic in the rational polynomial region
is evident, it is by no means as big as our pessimistic worst-case estimates given
earlier on page 8.

It is curious, and unexpected, that rounding-to-nearest gives larger errors in
the exponential region on all of the Sun systems.

On the IBM PC, the Microsoft C, Borland Turbo C, and TopSpeed C com-
pilers all offer a library function, _control87(), for programmer control of
IEEE 754 floating-point rounding modes. Lahey Fortran provides no such fa-
cility. However, it can call Microsoft and Turbo C functions and assembly code
routines, so the facility could be added.

On larger systems, Sun may be unique in offering the Fortran programmer
control over the rounding mode in Motorola 68xxx (Sun 3), Intel 386 (Sun 386i),
and SPARC (Sun 4) CPUs.

The Convex C1 and C220 systems offer only a partial implementation of
IEEE arithmetic, with neither infinity, nor NaN, nor gradual underflow, nor

13

rounding-mode control. The Convex native-mode arithmetic is identical to that
of the DEC VAX architecture.

The 32-bit DEC VAX processors have a single-precision format that resem-
bles IEEE 754, without gradual underflow or infinity. There is a floating-point
reserved operand that is somewhat like a NaN, but always causes a trap. There
are two formats of double precision, D-floating, with the same exponent range
as in single precision, and G-floating, with a range comparable to IEEE 754 64-
bit precision. The VAX architecture also defines a quadruple-precision 128-bit
floating-point arithmetic, called H-floating. In the smaller VAX models, this is
implemented entirely in software.

The Hewlett-Packard PA-RISC architecture on the HP 9000/7xx and 9000/
8xx machines supports all four founding IEEE 754 modes, but neither the com-
pilers nor the run-time library make them accessible to the Fortran or C pro-
grammer.

The IBM 3090 mainframe floating-point arithmetic is truncating, and has
wobbling precision. There is no support for other rounding modes.

The IBM RS/6000 and coming DEC Alpha processors provide only compile-
time choice of rounding modes.

Although the MIPS CPUs used in DECstation and Silicon Graphics work-
stations have user-settable rounding modes, neither vendor provides either a
compiler option or library support for doing so. MIPS’ own workstations have a
manual page describing a C run-time library routine, fpsetround(), for setting
the floating-point mode, but neither it nor its associated include file could be
found by the compiler and linker.

Like the Sun 3, the NeXT uses the Motorola floating-point processor, which
uses 80-bit arithmetic. The longer precision likely accounts for the low errors in
Table 8, although the same behavior is not seen in the Sun 3 results in Table 10.

The Stardent 1520 hardware implements only round-to-nearest, and gradual
underflow is not supported.

References

[1] Nelson H. F. Beebe. Accurate square root computation. Technical report,
Center for Scientific Computing, Department of Mathematics, University of
Utah, Salt Lake City, UT 84112, USA, November 29 1990.

[2] William J. Cody, Jr. and William Waite. Software Manual for the Elemen-
tary Functions. Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1980.
ISBN 0-13-822064-6. x + 269 pp. LCCN QA331 .C635 1980.

[3] John F. Hart, E. W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thatcher, Jr., and Christoph Witzgall.
Computer Approximations. Robert E. Krieger Publishing Company, Hunt-

14

Table 2: Relative errors in tanh(x) on Convex C220 (ConvexOS 9.0).

region MRE RMS
bit loss

polynomial 1.60 0.00
exponential 1.55 0.00

Table 3: Relative errors in tanh(x) on DEC MicroVAX 3100 (VMS 5.4).

arithmetic region MRE RMS
bit loss

D-floating polynomial 1.81 0.00
G-floating polynomial 1.37 0.00
D-floating exponential 2.00 0.00
G-floating exponential 1.16 0.00

Table 4: Relative errors in tanh(x) on Hewlett-Packard 9000/720 (HP-UX
A.B8.05).

region MRE RMS
bit loss

polynomial 1.99 0.06
exponential 1.67 0.00

Table 5: Relative errors in tanh(x) on IBM 3090 (AIX 370). This system offers
only truncating floating-point arithmetic, equivalent to round-to-zero. Double
precision has 14 base-16 digits, equivalent to 53–56 bits.

region MRE RMS
bit loss

polynomial 1.05 0.73
exponential 1.00 0.63

15

Table 6: Relative errors in tanh(x) on IBM RS/6000 (AIX 3.1).

region rounding MRE RMS
direction bit loss

polynomial ’tonearest’ 1.30 0.00
’tozero’ 1.99 0.05
’negative’ 1.99 0.05
’positive’ 1.62 0.00

exponential ’tonearest’ 1.55 0.00
’tozero’ 1.67 0.00
’negative’ 1.67 0.00
’positive’ 1.55 0.00

Table 7: Relative errors in tanh(x) on MIPS RC3230 (RISC/os 4.52).

region MRE RMS
bit loss

polynomial 1.99 0.06
exponential 1.67 0.00

Table 8: Relative errors in tanh(x) on NeXT (Motorola 68040, Mach 2.1).

region MRE RMS
bit loss

polynomial 0.35 0.00
exponential 0.07 0.00

Table 9: Relative errors in tanh(x) on Stardent 1520 (OS 2.2). This system
offers only round-to-nearest floating-point arithmetic.

region MRE RMS
bit loss

polynomial 1.99 0.06
exponential 1.58 0.00

16

Table 10: Effect of rounding direction on maximum relative error in tanh(x) on
Sun 3 (SunOS 4.1.1, Motorola 68881 floating-point).

region rounding MRE
direction bit loss

polynomial ’tonearest’ 1.00
’tozero’ 0.99

’negative’ 0.99
’positive’ 1.00

exponential ’tonearest’ 0.76
’tozero’ 0.73

’negative’ 0.73
’positive’ 0.74

Table 11: Effect of rounding direction on maximum relative error in tanh(x) on
Sun 386i (SunOS 4.0.2, Intel 387 floating-point).

region rounding MRE
direction bit loss

polynomial ’tonearest’ 1.00
’tozero’ 1.00

’negative’ 1.00
’positive’ 1.00

exponential ’tonearest’ 0.76
’tozero’ 0.73

’negative’ 0.73
’positive’ 0.73

17

Table 12: Effect of rounding direction on maximum relative error in tanh(x) on
Sun SPARCstation (SunOS 4.1.1, SPARC floating-point).

region rounding MRE
direction bit loss

polynomial ’tonearest’ 1.31
’tozero’ 1.82

’negative’ 1.54
’positive’ 1.79

exponential ’tonearest’ 1.55
’tozero’ 1.28

’negative’ 1.28
’positive’ 1.50

ington, NY, USA, 1968. ISBN 0-88275-642-7. x + 343 pp. LCCN QA 297
C64 1978. Reprinted 1978 with corrections.

18

