
Accurate Square Root Computation

Nelson H. F. Beebe
Center for Scientific Computing

Department of Mathematics
University of Utah

Salt Lake City, UT 84112
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

Internet: beebe@math.utah.edu

09 March 1994
Version 1.05

CONTENTS i

Contents

1 Introduction 1

2 The plan of attack 1

3 Some preliminaries 3

4 Denormalized numbers 8

5 Infinity and NaN 10

6 The square root algorithm 12

7 Testing the square root function 23

8 Conclusions 28

ii CONTENTS

Abstract

These notes for introductory scientific programming courses describe an
implementation of the Cody-Waite algorithm for accurate computation of
square roots, the simplest instance of the Fortran elementary functions.

1

1 Introduction

The classic books for the computation of elementary functions, such as
those defined in the Fortran and C languages, are those by Cody and Waite
[2] for basic algorithms, and Hart et al [3] for polynomial approximations.

Accurate computation of elementary functions is a non-trivial task, wit-
nessed by the dismal performance of the run-time libraries of many lan-
guages on many systems. Instances have been observed where 2/3 of the
bits in the answer have been wrong.

The pioneering work of Cody and Waite set down accurate algorithms for
floating-point and fixed-point machines, in both binary and decimal arith-
metic, and in addition, provided a comprehensive test package, known as
ELEFUNT, that can test the quality of an implementation of the Fortran run-
time libraries. The author and a student assistant, Ken Stoner, a few years
ago prepared a C translation of the ELEFUNT package which has been used
to make the same tests on numerous C run-time libraries.

We must observe from the beginning that there is a limit to the accuracy
that can be expected from any function. Consider evaluating y = F(x).
From elementary calculus, dy = F ′(x)dx, or

dy
y
= xF

′(x)
F(x)

dx
x

That is, the relative error in the argument x, which is dxx , produces a relative

error in the function result, dyy , which is the product of the argument relative

error, and the magnification factor x F
′(x)
F(x) .

For the case of the square root function to be considered here, the magni-
fication factor is 1/2. The square root function is therefore quite insensitive
to errors in its argument.

For the exponential function, exp(x), the magnification factor is x, or
equivalently, dyy = dx. This says that the relative error in the function is
the absolute error in the argument. The only way to achieve a small relative
error in the function value is therefore to decrease the absolute error in the
argument, which can only be done by increasing the number of bits used to
represent it.

2 The plan of attack

In most cases, the computation of the elementary functions is based upon
these steps:

• Consider the function argument, x, in floating-point form, with a base
(or radix) B, exponent e, and a fraction, f , such that 1/B ≤ f < 1.

2 2 THE PLAN OF ATTACK

Then we have x = ±f × Be. The number of bits in the exponent and
fraction, and the value of the base, depends on the particular floating-
point arithmetic system chosen.

For the now-common IEEE 754 arithmetic, available on most modern
workstations and personal computers, the base is 2. In 32-bit single
precision, there are 8 exponent bits, and 24 fraction bits (23 stored
plus 1 implicit to the left of the binary point). In 64-bit double preci-
sion, there are 11 exponent bits, and 53 fraction bits (52 stored plus
1 implicit to the left of the binary point).

The IEEE 754 standard also defines an 80-bit temporary real format
which the Intel floating-point chips implement; most others do not.
This format has a 15-bit exponent, 63 fraction bits, and 1 explicit bit
to the left of the binary point.

I have only encountered one Fortran compiler (Digital Research’s f77
on the IBM PC) that made this format accessible, but that compiler was
otherwise fatally flawed and unusable.

The 1989 ANSI C standard [1] permits a long double type which could
be used to provide access to the IEEE temporary real format, or to 128-
bit floating-point types supported on IBM and DEC VAX architectures.
We may hope that future C compilers will provide access to this longer
floating-point type when the hardware supports it. Fortran compilers
for those architectures already provide support for it.

• Use properties of the elementary function to range reduce the argu-
ment x to a small fixed interval. For example, with trigonometric func-
tions, which have period π , this means expressing the argument as
x = nπ ± r , so that e.g. sinx = ± sinr , where r is in 0 ≤ r < π/2.

• Use a small polynomial approximation [3] to produce an initial esti-
mate, y0, of the function on the small interval. Such an estimate may
be good to perhaps 5 to 10 bits.

• Apply Newton iteration to refine the result. This takes the form yk =
yk−1/2 + (f/2)/yk−1. In base 2, the divisions by two can be done by
exponent adjustments in floating-point computation, or by bit shifting
in fixed-point computation.

Convergence of the Newton method is quadratic, so the number of
correct bits doubles with each iteration. Thus, a starting point correct
to 7 bits will produce iterates accurate to 14, 28, 56, . . . bits. Since the
number of iterations is very small, and known in advance, the loop is
written as straight-line code.

• Having computed the function value for the range-reduced argument,
make whatever adjustments are necessary to produce the function

3

value for the original argument; this step may involve a sign adjust-
ment, and possibly a single multiplication and/or addition.

While these steps are not difficult to understand, the programming difficulty
is to carry them out rapidly, and without undue accuracy loss. The argument
reduction step is particularly tricky, and is a common source of substantial
accuracy loss for the trigonometric functions.

Fortunately, Cody and Waite [2] have handled most of these details for
us, and written down precise algorithms for the computation of each of the
Fortran elementary functions.

Their book was written before IEEE 754 arithmetic implementations be-
came widely available, so we have to take additional care to deal with unique
features of IEEE arithmetic, including infinity, not-a-number (NaN), and grad-
ual underflow (denormalized numbers).

3 Some preliminaries

We noted above that the algorithm is described in terms of the base, ex-
ponent, and fraction of floating-point numbers. We will therefore require
auxiliary functions to fetch and store these parts of a floating-point number.
We will also require a function for adjusting exponents.

Because these operations require knowledge of the base, and the precise
storage patterns of the sign, exponent, and fraction, they depend on the host
floating-point architecture, and they also require bit-extraction primitives.
They are therefore definitely machine-dependent.

Once they have been written for a given machine, much of the rest of the
code can be made portable across machines that have similar floating-point
architectures, even if the byte order is different; for example, the Intel IEEE
architecture used in the IBM PC stores bytes in ‘little-Endian’ order, while
most other IEEE systems (Convex, Motorola, MIPS, SPARC, . . .) store bytes
in ‘big-Endian’ order. It therefore would be desirable for these primitives to
be a standard part of all programming languages, but alas, they are not.

All computer architectures have machine-level instructions for bit ma-
nipulation. Unfortunately, bit extraction facilities are not a standard part
of Fortran, although many Fortran implementations provide (non-standard)
functions for that purpose. The C language fares much better; it has a rich
set of bit manipulation operators. Thus, the primitives we shall describe
may not be easily implementable in Fortran on some machines. We shall
give both C and Fortran versions suitable for the Sun 3 (Motorola) and Sun
4 (SPARC), but not the Sun 386i (Intel) systems, because of the byte-order
difference noted above.

Cody and Waite postulate ten primitives that are required to implement
the algorithms for the Fortran elementary functions. For the square root

4 3 SOME PRELIMINARIES

algorithm, only three of these primitives are needed (the wording is taken
directly from [2, pp. 9–10]):

adx(x,n) Augment the integer exponent in the floating-point representation
of x by n, thus scaling x by the n-th power of the radix. The result
is returned as a floating-point function value. For example, adx(1.0,2)
returns the value 4.0 on binary machines, because 4.0 = 1.0 × 22.
This operation is valid only when x is non-zero, and the result neither
overflows nor underflows.

intxp(x) Return as a function value the integer representation of the ex-
ponent in the normalized representation of the floating-point number
x. For example, intxp(3.0) returns the value 2 on binary machines,
because 3.0 = (0.75) × 22, and the fraction 0.75 lies between 0.5 and
1.0. This operation is valid only when x is non-zero.

setxp(x,n) Return as a function value the floating-point representation of
a number whose significand (i.e. fraction) is the significand of the
floating-point number x, and whose exponent is the integer n. For ex-
ample, setxp(1.0,3) returns the value 4.0 on binary machines because
1.0 = (0.5)×21 and 4.0 = (0.5)×23. This operation is valid only when
x is non-zero and the result neither overflows nor underflows.

Note that each of these primitives has an argument validity restriction.
In particular, these functions cannot be used with floating-point arguments
that are denormalized, Infinity, or NaN. Cody and Waite use them only with
valid arguments, but in a more general environment, the functions would
have to check their arguments for validity.

Many UNIX Fortran compilers, including Sun’s, generate external sym-
bols from Fortran names by appending a trailing underscore to the name,
spelling it in lower-case. Not all do so; the Stardent Fortran compiler gener-
ates Fortran external names spelled in upper-case, without an extra under-
score.

Therefore, to make Fortran-callable C versions on Sun OS, we require
knowledge of the argument passing methods of C and Fortran, and how
function values are returned by these languages, and we need to name the
C function with a trailing underscore. Fortunately, all UNIX systems use
similar argument passing conventions for all languages, because almost the
entire operating system, compilers, and run-time libraries are written in C,
and on Sun OS, function values are also returned the same way by both C
and Fortran.

In the remainder of this section, we present C and Fortran versions of the
three primitives needed for the square root computation. We give versions
in both languages, because some Fortran implementations lack the neces-
sary bit primitives needed to implement these functions, in which case a C
implementation will be necessary.

5

If you are not interested in the details of how these functions are
implemented, skip now to the next section.

Until ANSI C [1], the C language automatically promoted function argu-
ments and return values from single precision to double precision. This
was an economization introduced early into the C language so that the run-
time library had to be implemented only in double precision. At the time,
floating-point use in C was expected to be minimal, since it was developed
to write the UNIX operating system and support utilities.

Consequently, for the single-precision C functions (data type float in-
stead of double), it is necessary to compile them with an ANSI-level com-
piler. On Sun systems, this is presently available only in the Free Software
Foundation’s compiler, gcc, and that compiler must be used instead of the
native cc.

Here is the function for incrementing the exponent field:

1 float
2 adx_(x,n)
3 float *x;
4 int *n;
5 {
6 union
7 {
8 float f;
9 int i;

10 } w;
11 int old_e;
12

13 w.f = *x;
14 old_e = (w.i >> 23) & 0xff; /* extract old exponent */
15 old_e = (old_e + *n) & 0xff; /* increment old exponent */
16 w.i &= ~0x7f800000; /* clear exponent field */
17 w.i |= old_e << 23; /* set new exponent */
18 return (w.f);
19 }

For readers unfamiliar with C, a brief explanation is in order. Fortran passes
arguments by address; the C notation float *x says that x is an address
of a single-precision number. The C union structure is like the Fortran
EQUIVALENCE statement; it overlays two or more variables in the same mem-
ory locations. C hexadecimal constants are written with a leading 0x. The C
<< binary operator left-shifts the left operand by the number of bits speci-
fied by its right operand, and >> right shifts. The C & operator is a bit-wise
and, so expr & 0xff clears all but the lower eight bits of the integer value
expr. The C += assignment operator adds the right-hand side to the left-
hand side. Finally, the &= and |= operators and and or the right-hand side
into the left-hand side.

6 3 SOME PRELIMINARIES

In other words, this function assigns x to w.f , extracts the exponent,
adds the exponent increment n, clears the exponent field, shifts the new
exponent into place, and ors it in, doing all of this in integer operations.
The result that remains in storage is the floating-point number, w.f, which
is returned as a function value.

Given the Sun Fortran bit primitives, and(), lshift(), or(), and rshift(), a
Fortran translation of this code is straightforward. Note that we do not
declare the types of the bit primitives, because they are intrinsic functions
in Sun Fortran that are expanded by the compiler into efficient in-line code.

Fortunately, the Sun Fortran compiler supports hexadecimal constants
wherever integer constants can be used, making the code more readable
than it would be if the masks were coded in decimal. It also permits initial-
ization of floating-point numbers by hexadecimal constants. Most other
compilers are more restrictive, making Fortran versions for them much
more tedious to prepare.

1 real function adx(x,n)
2 * (Adjust exponent of x)
3 * [14-Nov-1990]
4 real x, wf
5 integer n, olde, wi
6

7 * Force storage overlay so we can twiddle bits
8 equivalence (wf, wi)
9

10 wf = x
11

12 * Extract old exponent
13 olde = and(rshift(wi,23),z’ff’)
14

15 * Increment old exponent
16 olde = and(olde + n,z’ff’)
17

18 * Zero the exponent field
19 wi = and(wi,z’807fffff’)
20

21 * Or in the new exponent
22 wi = or(wi,lshift(olde,23))
23

24 adx = wf
25

26 end

Here is the function for extracting the exponent:

1 int
2 intxp_(x)
3 int *x; /* really, float *x */

7

4 {
5 return (((x[0] >> 23) & 0xff) - 126);
6 }

This one is quite simple. To avoid the need for a union declaration, we
lie about the argument, telling C that we received an integer, even though
it was really a floating-point number. We right-shift it 23 bits to move the
exponent to the right end of the word, and it with a mask to clear all but
the 8 exponent bits, subtract the exponent bias, and return the result.

The Fortran version is again straightforward:

1 integer function intxp(x)
2 * (Return unbiased exponent of x)
3 * [14-Nov-1990]
4 real x, wf
5 integer wi
6

7 * Force storage overlay so we can twiddle bits
8 equivalence (wf, wi)
9

10 wf = x
11

12 * Extract the exponent field and unbias
13 intxp = and(rshift(wi,23),z’ff’) - 126
14

15 end

Finally, here is the function to set an explicit exponent on a number with
a fraction, f , in the range 0.5 ≤ f < 1.0:

1 float
2 setxp_(x,n)
3 float *x;
4 int *n;
5 {
6 union
7 {
8 float f;
9 int i;

10 } w;
11

12 w.f = *x;
13 w.i &= ~0x7f800000; /* clear exponent field */
14 w.i |= ((126 + *n) & 0xff) << 23; /* set new exponent */
15 return (w.f);
16 }
17

8 4 DENORMALIZED NUMBERS

This function first clears out the exponent bits by anding with the one’s
complement of the mask 0x7f800000, then or ’s in the left-shifted biased
exponent, n, to form the new floating-point number, w.f, which is returned
as a function value.

The Fortran version is:

1 real function setxp (x,n)
2 * (Set exponent of x)
3 * [14-Nov-1990]
4 real x, wf
5 integer n, wi
6

7 * Force storage overlay so we can twiddle bits
8 equivalence (wf, wi)
9

10 wf = x
11

12 * Zero exponent field
13 wi = and(wi,z’807fffff’)
14

15 * Or in the new exponent field
16 wi = or(wi,lshift(and(126 + n,z’ff’),23))
17

18 setxp = wf
19

20 end

4 Denormalized numbers

Denormalized numbers pose a special problem. Implementations of IEEE
754 arithmetic are free to handle the Standard entirely in hardware, en-
tirely in software, or in a combination of the two. Because denormalized
numbers lack the hidden bit, they require special handling in either hard-
ware or software.

For performance reasons, some vendors have not supported denormal-
ized numbers at all (Convex and Stardent), or require a software trap han-
dler (DEC Alpha; MIPS R3000, R4000, R4400, and R6000; Hewlett-Packard
PA-RISC; and Sun SPARC before Version 8.0 (most models except LX, SX, and
10)).

On the DEC Alpha with OSF 1.x, Fortran does not permit denormalized,
NaN, or Infinity values at all; execution is irrevocably terminated if they are
encountered. The DEC Alpha C language implementation does not have this
flaw.

The DEC Alpha architecture carries a severe performance penalty for the
handling of exceptional values. Normally, several successive floating-point

9

instructions are in execution at once, and if an exception occurs in one of
them, it is impossible to precisely identify the faulting instruction. To avoid
this imprecision and allow handling of denormalized numbers, NaN, and
Infinity via a software trap handler, the code must be compiled with special
trap barrier instructions before every floating-point instruction, to ensure
that no traps are outstanding; performance then plummets. The Alpha
architects argue that this sacrifice in the handling of exceptional values is
necessary to be able to produce chip implementations that run at very high
clock rates (up to 200MHz in current models). It will require several years
of experience before the correctness of that decision can be evaluated.

Denormalized numbers are handled in hardware with no performance
penalty on IBM RS/6000 POWER systems, and little performance penalty
(from 5% to 25%) on Sun SPARC Version 8.0 or later. Motorola 68xxx (Apple
Macintosh) and Intel x86 (IBM PC) floating-point processors do all arith-
metic in 80-bit extended precision; in such a case, denormalized values can
be renormalized in hardware because of the wider extended-precision ex-
ponent range, and so should cause no significant performance penalty.

Timing tests on those systems that require software trap handlers for
denormalized arithmetic show a serious performance hit of a factor of 25
to 50, because the trap handling involves two context switches between
user and kernel processes, and software implementation of the arithmetic
operation.

Since the Cody-Waite primitives cannot be used with denormalized op-
erands, we have to handle such operands specially. What we will do is to
test for a denormalized argument of sqrt(), and when one is found, scale the
argument by an even power of the base to produce a properly-normalized
value, and then in the final range adjustment, undo that scaling.

The need for an explicit test on every argument raises a performance
issue. Comparison with the largest denormalized number will cause a soft-
ware trap on some architectures. On those, we should therefore carry out
the test with an external function that examines bits in the floating-point
representation; that is slower than an in-line comparison, but still much
faster than a software trap. On architectures that can handle denormalized
values quickly, we can do a fast in-line comparison.

Here are single-precision and double-precision Fortran functions for test-
ing for denormalized values on big-endian IEEE 754 arithmetic systems (IBM
RS/6000, HP, MIPS (including DECstation), Motorola, and Sun). The double-
precision version requires a slight modification to work on little-endian sys-
tems (Intel (IBM PC) and DEC Alpha): exchange wi(1) and wi(2) in the last
executable statement. The and() and rshift() bit primitives are Sun Fortran
extensions; they will likely need to be changed on other architectures.

1 logical function isden(x)
2 * (is denormalized?)

10 5 INFINITY AND NAN

3 * Return .TRUE. if x is denormalized, and
4 * .FALSE. otherwise, without causing a
5 * floating-point trap.
6 * (09-Mar-1994)
7 real x,wf
8 integer wi
9 equivalence (wf, wi)

10

11 wf = x
12

13 * Denorm has minimum exponent, and non-zero
14 * fraction
15 isden = (and(rshift(wi,23),255) .eq. 0)
16 x .and. (and(wi,8388607) .ne. 0)
17

18 end

1 logical function disden(x)
2 * (is denormalized?)
3 * Return .TRUE. if x is denormalized, and
4 * .FALSE. otherwise, without causing a
5 * floating-point trap.
6 * (08-Mar-1994)
7 double precision x,wf
8 integer wi(2)
9 equivalence (wf, wi(1))

10

11 wf = x
12

13 * Denorm has minimum exponent, and non-zero
14 * fraction
15 disden = (and(rshift(wi(1),20),2047) .eq. 0)
16 x .and.
17 x ((and(wi(1),1048575) .ne. 0) .or.
18 x (wi(2) .ne. 0))
19

20 end

Decimal, rather than hexadecimal, representations of the mask values
are used to reduce the number of places where the code might have to be
changed for a different compiler.

5 Infinity and NaN

As with denormalized values, Infinity and NaN require a software trap han-
dler on some architectures, and on such systems, we need to resort to ex-
ternal functions that can safely test for these values without causing a trap.

11

The bit patterns for Infinity and NaN have the largest exponent, while
the fraction is zero for Infinity, and non-zero for NaN. Thus, the code for
the test functions is very similar.

1 logical function isinf(x)
2 * (is Infinity?)
3 * Return .TRUE. if x is Infinity, and
4 * .FALSE. otherwise, without causing a
5 * floating-point trap.
6 * (09-Mar-1994)
7 real x,wf
8 integer wi
9 equivalence (wf, wi)

10

11 wf = x
12

13 * Inf has maximum exponent, and zero fraction
14 isinf = (and(rshift(wi,23),255) .eq. 255)
15 x .and. (and(wi,8388607) .eq. 0)
16

17 end

1 logical function isnan(x)
2 * (is NaN?)
3 * Return .TRUE. if x is a NaN, and
4 * .FALSE. otherwise, without causing a
5 * floating-point trap.
6 * (09-Mar-1994)
7 real x,wf
8 integer wi
9 equivalence (wf, wi)

10

11 wf = x
12

13 * NaN has maximum exponent, and non-zero fraction
14 isnan = (and(rshift(wi,23),255) .eq. 255)
15 x .and. (and(wi,8388607) .ne. 0)
16

17 end

The double-precision versions are similar, and as with disden(), on little-
endian architectures, the code must be rewritten to exchange wi(1) and
wi(2) in the last executable statement.

1 logical function disinf(x)
2 * (is Infinity?)
3 * Return .TRUE. if x is Infinity, and
4 * .FALSE. otherwise, without causing a

12 6 THE SQUARE ROOT ALGORITHM

5 * floating-point trap.
6 * (09-Mar-1994)
7 double precision x,wf
8 integer wi(2)
9 equivalence (wf, wi(1))

10

11 wf = x
12

13 * Inf has maximum exponent, and zero fraction
14 disinf = (and(rshift(wi(1),20),2047) .eq. 2047)
15 x .and. (and(wi(1),1048575) .eq. 0) .and.
16 x (wi(2) .eq. 0)
17

18 end

1 logical function disnan(x)
2 * (is NaN?)
3 * Return .TRUE. if x is NaN, and .FALSE. otherwise,
4 * without causing a floating-point trap.
5 * (09-Mar-1994)
6 double precision x,wf
7 integer wi(2)
8 equivalence (wf, wi(1))
9

10 wf = x
11

12 * NaN has maximum exponent, and non-zero fraction
13 disnan = (and(rshift(wi(1),20),2047) .eq. 2047)
14 x .and. ((and(wi(1),1048575) .ne. 0) .or.
15 x (wi(2) .ne. 0))
16

17 end

6 The square root algorithm

We are now ready to demonstrate the algorithm for computing the square
root [2, pp. 17–34]. Assume that x ≥ 0, and recall that x = f × Be, 1/B ≤
f < 1, and for IEEE arithmetic, B = 2.

We decompose the floating-point number into its parts by

e = intxp(x) (1)

f = setxp(x,0) (2)

B = 2 (3)

13

Then we have √
x =

√
f × Be/2 (e is even) (4)

= (
√
f/
√
B)× B(e+1)/2 (e is odd) (5)

These two results are the range reduction; if we compute
√
f , we can get√

x from it by a single multiplication, and possibly, a division. We do not
require any exponentiations, because powers of the base can be constructed
more rapidly with the setxp() function.

A starting estimate of the square root value can be obtained from [3]:

y0 = 0.41731+ 0.59016 × f (6)

With this approximation, Newton iterations give the following numbers of
correct bits:

Iteration Number
0 1 2 3

7.04 15.08 31.16 63.32

Thus, in single precision, two iterations suffice to generate a result correct
to more than the 24 bits that we actually store in single precision. Three
iterations are enough for IEEE double precision.

The Newton iteration formula for base B = 2 is

yk = 0.5× (yk−1 + f/yk−1) (7)

On a machine with slow multiplication, we could do the multiplication by
0.5 by calling adx(yk,-1). However, on modern RISC systems, like the Sun
SPARC, a floating-point multiply takes only few machine cycles, and is faster
than a function call. From the table above, we only need to compute up to
k = 2. If we use in-line code, this gives

y1 = 0.5× (y0 + f/y0)

and
y2 = 0.5× (y1 + f/y1)

We can save one multiply as follows:

z = (y0 + f/y0)
y1 = 0.5× z
y2 = 0.5× (0.5× z + f/(0.5× z))

= 0.25× z + f/z

14 6 THE SQUARE ROOT ALGORITHM

For the case of odd e, we need to divide by
√
B = √

2. Since division is
often much slower than multiplication, we can instead multiply by

√
0.5,

which we can code in-line as a constant. This constant can be written in
floating-point if the compiler’s conversion of floating-point numbers to in-
ternal form is sufficiently accurate (this is the case with Sun’s compilers),
and otherwise, we must use an octal or hexadecimal representation so as to
get every bit correct. This constant is√

0.5 = 0.70710 67811 86547 52440 . . . (decimal)
= 0.55202 36314 77473 63110 . . . (octal)
= 0.B504F 333F9 DE648 4597E . . . (hexadecimal)

Hint: you can compute these values on any UNIX system using
the bc arbitrary-precision calculator. Here, we ask for accuracy
of 30 decimal digits, and evaluate 1/

√
2 in output bases 8, 10,

and 16:

% bc
scale=30;
ob=8;
sqrt(0.5);
.552023631477473631102131373046633

ob=10;
sqrt(0.5);
.707106781186547524400844362104

ob=16;
sqrt(0.5);
.B504F333F9DE6484597D89B3

Having obtained the approximation to
√
f as y2, we could then use

adx(y2,M) to set the correct exponent. In the code below, we actually use
setxp() since we know the exponent is already zero. This avoids the need
for adx() altogether in this implementation of the sqrt() function.

Here then is the Fortran code for our single-precision square root routine:

1 real function sqrt(x)
2 * Cody-Waite implementation of sqrt(x)
3 * [08-Mar-1994]
4

5 integer and, e, intxp, nbias
6 real f, setxp, x, xx, y, z
7 logical isden, isinf, isnan

15

8

9 real denmax
10 real onemme
11 real Inf
12

13 * denmax = maximum positive denormalized number
14 data denmax /z’007fffff’/
15

16 * onemme = 1.0 - machine epsilon
17 data onemme /z’3f7fffff’/
18

19 * Inf = +infinity
20 data Inf /z’7f800000’/
21

22 ***
23 ** Use external isxxx() implementations if
24 ** exceptional values are handled (slowly) in
25 ** software, e.g. MIPS (R3000, R4000, R4400), HP
26 ** PA-RISC (1.0, 1.1), DEC Alpha, Sun SPARC
27 ** (pre-version 8: most models).
28 ** Use in-line statement functions if exceptional
29 ** values are handled in hardware, e.g. IBM RS/6000
30 ** (POWER), Sun SPARC (version 8 or later: LX, SX,
31 ** and 10/xxx)
32 ***
33 isden(xx) = (xx .le. denmax)
34 isinf(xx) = (xx .ge. Inf)
35 isnan(xx) = (xx .ne. xx)
36

37 * Generate a NaN for x <= 0.0, and Inf for x == Inf
38 * and handle the special case of x == 0.0 so we do
39 * not violate the assumptions that the arguments to
40 * setxp() and intxp() are non-zero.
41

42 if (x .eq. 0.0) then
43 sqrt = 0.0
44 return
45 else if (x .lt. 0.0) then
46 sqrt = 0.0
47 sqrt = sqrt/sqrt
48 return
49 else if (isinf(x)) then
50 sqrt = 0.0
51 sqrt = 1.0/sqrt
52 return
53 else if (isnan(x)) then
54 sqrt = 0.0

16 6 THE SQUARE ROOT ALGORITHM

55 sqrt = sqrt/sqrt
56 return
57 else if (isden(x)) then
58 * scale x by 2**24 (this is exact)
59 xx = x * 16 777 216.0
60 nbias = -24
61 else
62 xx = x
63 nbias = 0
64 end if
65

66 e = intxp(xx)
67 f = setxp(xx,0)
68

69 * y0 to 7.04 bits
70 y = 0.41731 + 0.59016 * f
71

72 * y1 to 15.08 bits
73 z = y + f/y
74

75 * y2 to 31.16 bits
76 y = 0.25*z + f/z
77

78 * Include sqrt(2) factor for odd exponents, and
79 * ensure (0.5 <= y) and (y < 1.0). Otherwise,
80 * setxp() will give wrong answer.
81

82 if (and(e,1) .ne. 0) then
83 y = y * 0.70710 67811 86547 52440 08443 62104 E+00
84 y = max(y,0.5)
85 e = e + 1
86 end if
87 y = min(y,onemme)
88

89 * Insert exponent to undo range reduction.
90 sqrt = setxp(y,(e + nbias)/2)
91

92 end

There are several very subtle points in this code that must be discussed:

• Because we are going to twiddle bits using the intxp() and setxp() func-
tions, we must ensure that the arguments to those functions match
their design requirements: they must be normalized, non-zero, and
the result may not overflow or underflow, or generate a NaN. This
means that we have to test for the special cases of x < 0, x = 0,
x = NaN, x = ∞, and x = denormalized since these would otherwise
result later in invalid arguments to intxp() and setxp().

17

• The tests themselves must not generate a run-time trap from gener-
ation of denormalized, NaN, or infinity values. This means that we
have to store the constants Inf and denmax in the program with hex-
adecimal initializations. We do not need to store a NaN, because the
expression (x .ne. x) tests for it.

• The fast in-line arithmetic statement functions must be commented
out on those architectures that trap on exceptional values so that the
external functions presented earlier can do the tests safely. Good op-
timizing compilers will expand arithmetic statement functions in-line,
so there should not be a significant penalty for their use. For some
compilers, it may be desirable to replace the isxxx() statement func-
tion invocations with explicit comparisons.

• If the function argument is a NaN, or is less than zero, the sqrt() func-
tion is not defined on the real axis, so we must return a NaN. We must
not return a precomputed one however, because that would not gen-
erate a trap that the user might want to handle. Instead, we generate
one directly by evaluating the expression 0.0/0.0. The Sun compiler
computes this at run time if the function is compiled without optimiza-
tion, but with optimization, reduces it to a compile-time constant. We
therefore have to generate it from a run-time expression, sqrt/sqrt,
and verify that the compiler does not optimize this too by checking the
assembly code generated (the compile-time option -S produces that
output).

• If the function argument is infinity, then we generate an infinity for the
result, being careful to code the value in such a way that a run-time
division, and trap, will occur.

• A denormalized argument is rescaled into the range of normalized
numbers, and the scale factor is remembered for later use in the range
restoration.

• Testing for oddness of e can be done portably by

if (mod(e,2) .ne. 0) then

but the Hewlett-Packard PA-RISC and Sun SPARC architecture before
version 8.0 have neither integer multiply, nor divide, nor modulus, in-
structions, so those operations have to be done by an expensive sub-
routine call. The and() function does a simple bit test, and is expanded
in-line by the compiler. Testing the low-order bit to determine oddness
is valid only in sign-magnitude and two’s complement arithmetic sys-
tems; in a one’s complement system, a number is odd if its low-order
bit differs from its sign bit.

18 6 THE SQUARE ROOT ALGORITHM

The integer divisions by 2 are handled by a fast shift instruction on
the Sun SPARC, and by a fast bit-extraction instruction on the Hewlett-
Packard PA-RISC.

• Because blanks are not significant in Fortran, we are permitted to em-
bed blanks in constants to make them more readable, and I have done
so for two of them.

• In the last few lines, we are ready to scale the result, y =
√
f to recover

the answer for
√
x. However, because finite arithmetic has been used

to compute y , it is possible that the computed value lies slightly out of
the range 0.5 ≤ y < 1.0 required for the setxp() function. The min()
and max() functions take care of moving y to the nearest endpoint
if it is outside that interval, and to do so, we need to make use of
the stored exact constant, onemme, which is the largest floating-point
number below 1.0.

The double-precision version is a simple extension of this code; we only
need to change the function names, data types, and constant initializations,
and then add one more Newton iteration to get the answer to sufficient
accuracy:

1 double precision function dsqrt(x)
2 * Cody-Waite implementation of dsqrt(x)
3 * [08-Mar-1994]
4

5 integer and, e, dintxp, nbias
6 double precision dsetxp, f, xx, x, y, z
7 logical disden, disinf, disnan
8

9 double precision denmax
10 double precision onemme
11 double precision Inf
12

13 * denmax = maximum positive denormalized number
14 data denmax /z’000fffffffffffff’/
15

16 * onemme = 1.0 - machine epsilon
17 data onemme /z’3fefffffffffffff’/
18

19 * Inf = +infinity
20 data Inf /z’7ff0000000000000’/
21

22 ***
23 ** Use external disxxx() implementations if
24 ** exceptional values are handled (slowly) in
25 ** software, e.g. MIPS (R3000, R4000, R4400), HP

19

26 ** PA-RISC (1.0, 1.1), DEC Alpha, Sun SPARC
27 ** (pre-version 8: most models).
28 ** Use in-line statement functions if exceptional
29 ** values are handled in hardware, e.g. IBM RS/6000
30 ** (POWER), Sun SPARC (version 8 or later: LX, SX,
31 ** and 10/xxx)
32 ***
33 disden(xx) = (xx .le. denmax)
34 disinf(xx) = (xx .ge. Inf)
35 disnan(xx) = (xx .ne. xx)
36

37 * Generate a NaN for x <= 0.0, and Inf for x == Inf
38 * and handle the special case of x == 0.0 so we do
39 * not violate the assumptions that the arguments to
40 * setxp() and intxp() are non-zero.
41

42 if (x .eq. 0.0D+00) then
43 dsqrt = 0.0D+00
44 return
45 else if (x .lt. 0.0D+00) then
46 dsqrt = 0.0D+00
47 dsqrt = dsqrt/dsqrt
48 return
49 else if (disinf(x)) then
50 dsqrt = 0.0D+00
51 dsqrt = 1.0D+00/dsqrt
52 return
53 else if (disnan(x)) then
54 dsqrt = 0.0D+00
55 dsqrt = dsqrt/dsqrt
56 return
57 else if (disden(x)) then
58 * scale x by 2**54 (this is exact)
59 xx = x * 18 014 398 509 481 984.0D+00
60 nbias = -54
61 else
62 xx = x
63 nbias = 0
64 end if
65

66 e = dintxp(xx)
67 f = dsetxp(xx,0)
68

69 * y0 to 7.04 bits
70 y = 0.41731D+00 + 0.59016D+00 * f
71

72 * y1 to 15.08 bits

20 6 THE SQUARE ROOT ALGORITHM

73 z = y + f/y
74

75 * y2 to 31.16 bits
76 y = 0.25D+00*z + f/z
77

78 * y3 to 63.32 bits
79 y = 0.5D+00*(y + f/y)
80

81 * Include sqrt(2) factor for odd exponents, and
82 * ensure (0.5 <= y) and (y < 1.0). Otherwise,
83 * dsetxp() will give wrong answer.
84

85 if (and(e,1) .ne. 0) then
86 y = y * 0.70710 67811 86547 52440 08443 62104 D+00
87 y = max(y, 0.5D+00)
88 e = e + 1
89 end if
90 y = min(y,onemme)
91

92 * Insert exponent to undo range reduction.
93 dsqrt = dsetxp(y,(e + nbias)/2)
94

95 end

The Cody-Waite primitives needed in dsqrt() are straightforward exten-
sions of the single-precision ones, but the exponent bias, bit masks, and
shift counts are different:

1 double
2 adx_(x,n)
3 double *x;
4 int *n;
5 {
6 union
7 {
8 double f;
9 int i[2];

10 } w;
11 int old_e;
12

13 w.f = *x;
14 old_e = (w.i[0] >> 20) & 0x7ff; /* extract old exponent */
15 old_e = (old_e + *n) & 0x7ff; /* increment old exponent */
16 w.i[0] &= ~0x7ff00000; /* clear exponent field */
17 w.i[0] |= (old_e << 20); /* set new exponent */
18 return (w.f);
19 }

21

1 double precision function dadx(x,n)
2 * (Increment exponent of x)
3 * [14-Nov-1990]
4 double precision wf, x
5 integer n, olde, wi(2)
6

7 * Force storage overlay so we can twiddle bits
8 equivalence (wf, wi(1))
9

10 wf = x
11

12 * Extract old exponent
13 olde = and(rshift(wi(1),20),z’7ff’)
14

15 * Increment old exponent
16 olde = and(olde + n,x’7ff’)
17

18 * Zero exponent field
19 wi(1) = and(wi(1),z’800fffff’)
20

21 * Or in the new exponent field
22 wi(1) = or(wi(1),lshift(olde,20))
23

24 dadx = wf
25

26 end

1 int
2 dintxp_(x)
3 int *x; /* really, double *x */
4 {
5 return (((x[0] >> 20) & 0x7ff) - 1022);
6 }

1 integer function dintxp(x)
2 * (Return unbiased exponent of x)
3 * [14-Nov-1990]
4 double precision wf, x
5 integer wi(2)
6

7 * Force storage overlay so we can twiddle bits
8 equivalence (wf, wi(1))
9

10 wf = x
11

12 * Extract the exponent field and unbias
13 dintxp = and(rshift(wi(1),20),z’7ff’) - 1022

22 6 THE SQUARE ROOT ALGORITHM

14

15 end

1 double

2 dsetxp_(x,n)

3 double *x;

4 int *n;

5 {

6 union

7 {

8 double f;

9 int i[2];

10 } w;

11

12 w.f = *x;

13 w.i[0] &= ~0x7ff00000; /* clear exponent field */

14 w.i[0] |= ((1022 + *n) & 0x7ff) << 20; /* set new exponent */

15 return (w.f);

16 }

1 double precision function dsetxp (x,n)

2 * (Set exponent of x)

3 * [14-Nov-1990]

4 double precision wf, x

5 integer n, wi(2)

6

7 * Force storage overlay so we can twiddle bits

8 equivalence (wf, wi(1))

9

10 wf = x

11

12 * Zero exponent field

13 wi(1) = and(wi(1),z’800fffff’)

14

15 * Or in the new exponent field

16 wi(1) = or(wi(1),lshift(and(1022 + n,z’7ff’),20))

17

18 dsetxp = wf

19

20 end

23

7 Testing the square root function

The mathematical square root function is monotonic with respect to its
argument; is our implementation also monotonic? This turns out to be
quite difficult to test for.

We observe that square root maps a given argument interval 0 . . . x onto
0 . . . sqrt(x); for x > 1, that interval is shorter than the argument interval.
In other words, there will be a many-to-one mapping of argument points
into function points; in general, two immediately adjacent arguments will
have the same square root.

You might wonder, could we just step through all floating-point num-
bers, generating the square root of each one, and then test the accuracy of
that result?

Timing a loop that calls our single-precision square root function with
random arguments in the range (0.0,1.0) shows that on a Sun SPARCsta-
tion 10/51 (the fastest SPARC processor in 1993), it takes an average of
2.67µsec per call; Sun’s built-in function averages 2.17µsec per call. With
an older SPARCstation 1 system, our function averages 26.7µsec per call,
and Sun’s, 11.0µsec per call. With older versions of the Sun Fortran compiler
and library, our function was faster.

In IEEE 32-bit arithmetic, there are 254 exponent values (the exponent
255 is reserved for infinity and NaN, and the exponent 0 for zero), and 223

fraction values; this gives a total of approximately 2.13× 109 different 32-
bit floating-point numbers. On the SPARC 10/51, calling the square root
function for each of them would take about 1.6 hr for our version, and
1.3 hr for Sun’s. Thus, it would be quite feasible to test a single-precision
elementary function with every possible single-precision argument.

In double precision, there are 2046 exponent values (0 and 2047 are
reserved), and 253 fractional values, giving a total of about 1.84×1019 values.
On the SPARC 10/51, the Sun dsqrt() function averages about 2.5µsec per
call; it would then take about 1.5 million years to evaluate all possible square
roots.

Testing by enumeration of function values for all possible arguments is
therefore only feasible in single precision, and even then would be tedious
except on the fastest processors. Clearly, some sort of argument sampling
will be necessary in general.

In the ELEFUNT package, Cody and Waite developed tests that exam-
ine certain equalities that should be obeyed by particular functions. These
tests examine the behavior of 2000 random arguments in selected intervals.
The tests also check the behavior of the functions when presented with ar-
guments near the floating-point limits, or with ones that would generate
results near those limits.

How does our implementation of the square root function compare with
the built-in one on Sun SPARC systems? The answer can be found by running

24 7 TESTING THE SQUARE ROOT FUNCTION

the ELEFUNT tests on both functions.
The following results are extracted from the output listings of the square

test program using first the native Sun Fortran sqrt(), and then ours. The
listing files are each about 85 lines long, so we show first the listing for
our implementation, and then we show the test headers and differences
between Sun’s and ours.

--
TEST OF SQRT(X*X) - X

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(0.7071E+00, 0.1000E+01)

SQRT(X) WAS LARGER 86 TIMES,
AGREED 1841 TIMES, AND

WAS SMALLER 73 TIMES.

THERE ARE 24 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER

THE MAXIMUM RELATIVE ERROR OF 0.8422E-07 = 2 ** -23.50
OCCURRED FOR X = 0.707740E+00

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.50

THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.2124E-07 = 2 ** -25.49
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00
--
TEST OF SQRT(X*X) - X

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(0.1000E+01, 0.1414E+01)

SQRT(X) WAS LARGER 9 TIMES,
AGREED 1684 TIMES, AND

WAS SMALLER 307 TIMES.

THERE ARE 24 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER

THE MAXIMUM RELATIVE ERROR OF 0.1192E-06 = 2 ** -23.00
OCCURRED FOR X = 0.100022E+01

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.00

THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.3990E-07 = 2 ** -24.58
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00
--
TEST OF SPECIAL ARGUMENTS

SQRT(XMIN) = SQRT(0.1401298E-44) = 0.3743392E-22

25

SQRT(1-EPSNEG) = SQRT(1- 0.5960464E-07) = 0.9999999E+00

SQRT(1.0) = SQRT(0.1000000E+01) = 0.1000000E+01

SQRT(1+EPS) = SQRT(1+ 0.1192093E-06) = 0.1000000E+01

SQRT(XMAX) = SQRT(Inf) = Inf

--
TEST OF ERROR RETURNS

SQRT WILL BE CALLED WITH THE ARGUMENT 0.0000E+00
THIS SHOULD NOT TRIGGER AN ERROR MESSAGE

SQRT RETURNED THE VALUE 0.0000E+00

SQRT WILL BE CALLED WITH THE ARGUMENT -0.1000E+01
THIS SHOULD TRIGGER AN ERROR MESSAGE

SQRT RETURNED THE VALUENaN

THIS CONCLUDES THE TESTS
--

Here is a comparison between the two implementations:

--
TEST OF SQRT(X*X) - X

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(0.7071E+00, 0.1000E+01)

Sun: SQRT(X) WAS LARGER 0 TIMES,
Sun: AGREED 2000 TIMES, AND
Sun: WAS SMALLER 0 TIMES.

Us: SQRT(X) WAS LARGER 86 TIMES,
Us: AGREED 1841 TIMES, AND
Us: WAS SMALLER 73 TIMES.

Sun: THE MAXIMUM RELATIVE ERROR OF 0.0000E+00 = 2 **-999.00
Sun: OCCURRED FOR X = 0.000000E+00
Sun: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

Us: THE MAXIMUM RELATIVE ERROR OF 0.8422E-07 = 2 ** -23.50
Us: OCCURRED FOR X = 0.707740E+00
Us: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.50

26 7 TESTING THE SQUARE ROOT FUNCTION

Sun: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.0000E+00 = 2 **-999.00

Us: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.2124E-07 = 2 ** -25.49

--
TEST OF SQRT(X*X) - X

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(0.1000E+01, 0.1414E+01)

Sun: SQRT(X) WAS LARGER 0 TIMES,
Sun: AGREED 2000 TIMES, AND
Sun: WAS SMALLER 0 TIMES.

Us: SQRT(X) WAS LARGER 9 TIMES,
Us: AGREED 1684 TIMES, AND
Us: WAS SMALLER 307 TIMES.

Sun: THE MAXIMUM RELATIVE ERROR OF 0.0000E+00 = 2 **-999.00
Sun: OCCURRED FOR X = 0.000000E+00
Sun: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

Us: THE MAXIMUM RELATIVE ERROR OF 0.1192E-06 = 2 ** -23.00
Us: OCCURRED FOR X = 0.100022E+01
Us: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.00

Sun: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.0000E+00 = 2 **-999.00
Sun: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

Us: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.3987E-07 = 2 ** -24.58
Us: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00
--

Our implementation of sqrt() is reasonably good. It has a worst case
error of only 1 bit in the intervals tested.

Why is Sun’s implementation better? On most modern RISC machines,
the fastest floating-point arithmetic is double precision, not single preci-
sion, because the hardware always works in the long precision, and addi-
tional instructions are needed to convert to single precision. Thus, Sun’s
sqrt() function is very likely written in double precision, with the final re-
sult rounded to single. This should then give completely correct results over
the entire range of arguments. An internal double-precision implementa-
tion has the added benefit that no explicit test for denormalized numbers
is required, since single-precision denormalized values can be represented
in double-precision normalized form.

To test this prediction, I prepared a modified version of the single-preci-
sion square root routine that used the algorithm for dsqrt(), then converted

27

the function result to single precision before returning. The ELEFUNT test
results for it are now identical with those for Sun’s implementation of sqrt().

Finally, we show the differences in the ELEFUNT test output between
Sun’s dsqrt() and ours:

--
TEST OF DSQRT(X*X) - X

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(0.7071D+00, 0.1000D+01)

Sun: DSQRT(X) WAS LARGER 0 TIMES,
Sun: AGREED 2000 TIMES, AND
Sun: WAS SMALLER 0 TIMES.

Us: DSQRT(X) WAS LARGER 73 TIMES,
Us: AGREED 1852 TIMES, AND
Us: WAS SMALLER 75 TIMES.

Sun: THE MAXIMUM RELATIVE ERROR OF 0.0000D+00 = 2 **-999.00
Sun: OCCURRED FOR X = 0.000000D+00
Sun: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

Us: THE MAXIMUM RELATIVE ERROR OF 0.1567D-15 = 2 ** -52.50
Us: OCCURRED FOR X = 0.708678D+00
Us: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.50

--
TEST OF DSQRT(X*X) - X

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(0.1000D+01, 0.1414D+01)

Sun: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.0000D+00 = 2 **-999.00

Us: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.3787D-16 = 2 ** -54.55

Sun: DSQRT(X) WAS LARGER 0 TIMES,
Sun: AGREED 2000 TIMES, AND

Us: DSQRT(X) WAS LARGER 668 TIMES,
Us: AGREED 1332 TIMES, AND

Sun: THE MAXIMUM RELATIVE ERROR OF 0.0000D+00 = 2 **-999.00
Sun: OCCURRED FOR X = 0.000000D+00
Sun: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

Us: THE MAXIMUM RELATIVE ERROR OF 0.2215D-15 = 2 ** -52.00

28 REFERENCES

Us: OCCURRED FOR X = 0.100252D+01
Us: THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.00

Sun: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.0000D+00 = 2 **-999.00

Us: THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.1082D-15 = 2 ** -53.04

--
TEST OF SPECIAL ARGUMENTS

Sun: DSQRT(1+EPS) = DSQRT(1+0.2220446D-15) = 0.10000000000000000D+01
Us: DSQRT(1+EPS) = DSQRT(1+0.2220446D-15) = 0.10000000000000002D+01

As in the entirely single-precision implementation of sqrt(), accuracy is
excellent (a maximum error of 1 bit). Note that Sun’s implementation is
superb; their dsqrt() has all bits correct.

8 Conclusions

The goal of this description has been to lead the reader through the details
of the computation of the simplest elementary function, and to illustrate
the care that must be taken to produce a correct, and fast, implementation
in a computer program.

Achieving maximum speed means that we need to use non-standard
extensions to the Fortran language, such as bit-manipulation primitives
and hexadecimal constants, even though the basic algorithm remains un-
changed. Such machine dependencies are regrettable, but Fortran’s lack of
standardization in these areas gives us no recourse. Fortunately, they need
to be handled only once for each architecture, and then the code can be
made available as a library routine.

It should be clear that there is a very large step from being able to write
down the mathematical relations in equations 3, 5, 6, and 7 beginning on
page 12 to the computational algorithms expressed in the computer pro-
grams.

The difficulty in making the transition from mathematical formulas to
computer algorithms is intimately connected with the fact that in the com-
puter, we must work with finite precision, and a finite number range, and
because of this, few computations are exact.

References

[1] American National Standards Institute, 1430 Broadway, New York, NY
10018, USA. American National Standard Programming Language C,

REFERENCES 29

ANSI X3.159-1989, December 14 1989.

[2] William J. Cody, Jr. and William Waite. Software Manual for the Elemen-
tary Functions. Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1980.
ISBN 0-13-822064-6. x + 269 pp. LCCN QA331 .C635 1980.

[3] John F. Hart, E. W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thatcher, Jr., and Christoph Witzgall.
Computer Approximations. Robert E. Krieger Publishing Company, Hunt-
ington, NY, USA, 1968. ISBN 0-88275-642-7. x + 343 pp. LCCN QA 297
C64 1978. Reprinted 1978 with corrections.

