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Abstract

This document provides a concise summary of the syntax of Fortran that
may be a helpful supplement to a Fortran textbook. Each statement in the
language is discussed in separate subsections, and recommended program-
ming practices are emphasized.
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1 A short history of Fortran

The first design of the Fortran (FORmula TRANslating system) language
was begun in 1954 by a research group at IBM, under the direction of John
Backus, following a December 1953 proposal for the project that Backus
had sent to IBM management.

Initial estimates that a compiler could be ready in a few months proved
overly optimistic. Although work on the compiler began in early 1955,
the first Programmer’s Reference Manual was not issued until October 15,
1956, and the first Fortran compiler became available to customers in April
1957, running on the IBM 704, a 36-bit machine.

Fortran was the first high-level language to survive, and is in widespread
use today throughout the world.

By the early 1960s, several other vendors had developed Fortran com-
pilers, each supporting a slightly different language. The undesirability
of language dialects led to the formation of a standardization committee,
X3J3, under the auspices of the American National Standards Institute.
The first Fortran language standard was released in 1966 [1], with sub-
sequent clarifications [9, 10]. Fortran was the first language to be stan-
dardized; since then, Cobol, MUMPS, Pascal, PL/1, C, Ada, Modula-2, and
others have been defined by national, or international, standards.

Deficiencies of Fortran 66 led to a revision of the Standard [11], and the
final version was released in April 1978 [2]; the language defined there is
called Fortran 77, and is the language level supported by virtually every
Fortran compiler available today. Most vendors had Fortran 77 compilers
by the early 1980s, but the world’s largest computer vendor, IBM, did not
have one until about 1985.

Standards work has continued [4], and in the fall of 1990, the first draft
of an international standard for what may be called Fortran 90 was re-
leased [6]. This is a major overhaul of Fortran 77, and in the view of many,
may be unwise; the new language is so large that it will be very costly to
implement, and compilers may be too large to run on personal computers.
If the standard is adopted, and that is at present debatable, it will likely
take many years before compilers for it become routinely available. Only
one book, based on an early draft of the Standard, has so far been published
[27].

Thus, for the 1980s and 1990s, the Fortran 77 Standard is the final
definition of what Fortran is.

Fortran was designed during the punched-card era which lasted from
the 1890s until the middle of the 1980s. It was developed about the same
time as Noam Chomsky’s pioneering work on the mathematical analysis of
natural languages, but Chomsky’s results were unknown in the computing
community until about 1960, where they were adapted to provide a rigorous
definition of the language Algol 60, in a notation known as BNF (Backus-
Naur Form), named after John Backus, the father of Fortran, and Peter
Naur, one of the principal designers of Algol.
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Because of these early origins, Fortran does not have a clean syntax, and
many peculiar features and restrictions were introduced because it was felt
that they would make the job of the compiler writers easier, and at the time,
no one knew better, because they had no knowledge of formal language
design. With the exception of Cobol and Basic, most languages developed
since the early 1960s have been founded on proper grammatical definitions.

John Backus has provided an interesting account of the early develop-
ments [12]. Here are three interesting quotes from that article:

p. 168: “As far as we were aware, we simply made up the lan-
guage as we went along. We did not regard language design as
a difficult problem, merely a simple prelude to the real problem:
designing a compiler which could produce efficient programs.”

p. 169: “Unfortunately we were hopelessly optimistic in 1954
about the problems of debugging FORTRAN programs (thus we
find on page 2 of the Report: “Since FORTRAN should virtually
eliminate coding and debugging. . . [1]”). . . ”

p. 178: “. . . : while it was perhaps natural and inevitable that
languages like FORTRAN and its successors should have devel-
oped out of the concept of the von Neumann computer as they
did, the fact that such languages have dominated our thinking
for over twenty years is unfortunate. It is unfortunate because
their long-standing familiarity will make it hard for us to un-
derstand and adopt new programming styles which one day will
offer far greater intellectual and computational power.”

In most books, the name of the language is spelled in upper-case, FOR-
TRAN, because it is an acronym; the Fortran 90 Standards Committee has
now recommended the spelling Fortran, which we use here.

The two most important contributions of Fortran to the computing world
have been the use of high-level statements to replace low-level assembly
language coding, and the fact that it permits machine-independent coding,
that is, the writing of software that can be run with little or no changes, on
a wide variety of computer hardware. The separation of the language used
by programmers from the language used by the computer has been the key
to the enormous success of the digital computer.

2 Fortran character set

In Fortran 66, the character set was restricted to upper-case letters and
digits, plus these 11 punctuation characters:

• asterisk,

• blank (space),

• comma,
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• currency symbol (dollar sign),

• equals,

• minus (hyphen, dash),

• open and close parentheses,

• period,

• plus, and

• slash.

Note that blank is a character, just like any other; its printable repre-
sentation just happens to be empty space.

These 47 characters were universally available on keypunches, and
could be represented in the 6-bit 64-character sets used on many computers
until the mid-1970s.

It was not until keypunches largely disappeared, and larger character
sets (7-bit, 8-bit, and 9-bit) were introduced, that lower-case letters became
widely available on computers.

The 1977 Standard extended the Fortran character set with only two
new ones: apostrophe and colon, and made no mention of lower-case letters.
However, it did permit any character representable in the host processor to
be used in the text of a comment statement, or inside quoted strings. Now
that lower-case letters are almost universally available, virtually every For-
tran compiler permits upper- and lower-case letters to be used interchange-
ably; letter case is not significant, except inside quoted strings. Processors
such as sf3pretty(1) 1 can be used to normalize letter case, should this
ever become necessary.

Because lower-case text is easier to read than upper-case text, many pro-
grammers now prefer to write Fortran statements in lower-case, reserving
upper-case to distinguish symbolic constants, set in PARAMETER state-
ments; this convention is widespread in the C programming language.

3 Fortran names

Names in Fortran must begin with a letter, optionally followed by letters
and digits. The name length must not exceed six characters. This rather
severe limit is a relic of the 36-bit words of the IBM 704 on which Fortran
was first developed. With the 6-bit BCD character set on that machine, at
most six characters could fit in one word, and the compiler writers’ job was
‘simplified’.

1Program names followed by a parenthesized digit indicate that documentation can be
found on UNIX systems in that section of the manual pages. Type man 1 sf3pretty for
documentation about that program.
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Some compilers permit longer names; however, in the interests of porta-
bility of your code, follow the Fortran standard, and ensure that names are
never longer than six characters.

4 Fortran statement labels

Executable Fortran statements can be labelled, but only with numeric la-
bels containing one to five digits. Blanks and leading zeroes are not signifi-
cant in labels, and the position of the label in columns 1–5 of the statement
does not matter.

Statement labels serve as reference tags for other Fortran statements,
include DO, GOTO, and err= and end= exits on I/O statements.

Since every statement label is potentially the target of GOTO state-
ment, the difficulty of understanding a program increases sharply when
labels are present. A cardinal rule of Fortran programming should always
be to minimize the number of statement labels.

For readability, statement labels should be kept in ascending order, with
uniform increments that allow room for later modifications. An initial label
of 10, with increments of 10, is a reasonable choice.

Older code tends to be full of labels, often in apparently random order.
Programs known as prettyprinters exist that can clean up Fortran code, re-
labelling statements so that the labels are in ascending order with constant
increments, and unused labels are optionally discarded. Some will also in-
dent DO loops and IF statements, and do other neatening operations to
make code more readable. The author’s pretty(1) is one such program; it
can be usefully combined with sf3pretty(1) .

5 Fortran constants

Fortran has six basic data types: real (single precision), double precision,
integer, complex, logical, and character.

Integer values contain only an optional leading sign followed by one or
more decimal digits. Examples are 1, +17, and -32767.

Floating-point numbers may optionally have a sign, an integer part,
a fractional part, and an exponent of ten. Either the integer part or the
fractional part must be specified. Examples are 3., .3, 0.3, +3.14, 3E10,
3.14D+00, and -6.27E-27.

The precision of floating-point constants is determined by the exponent
letter: E for single precision, and D for double precision. The precision is
not determined by the number of digits specified (this was the case with a
few old compilers); thus, the code

DOUBLE PRECISION PI
PI = 3.141592653589793238462643383276
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will assign a severely truncated value to PI, because the constant is evalu-
ated in single precision, then converted back to double precision, with zero
low-order bits supplied when the fractional part is extended.

Complex constants are represented by a parenthesized comma-
separated pair of numbers: (1.0,3.0) and (1,3) are both specifications of the
complex value with real part 1.0, and imaginary part 3.0.

Logical constants are either .TRUE. or .FALSE.; these have no partic-
ular numerical value, and consequently, logical values may not be used in
arithmetic expressions.

Character constants are strings of one or more processor-representable
characters delimited by single quotes (apostrophes). If an apostrophe is
needed in a string, it must be doubled: the Fortran character constant
’O’’Neill’ represents the string O’Neill.

There is no provision for special escape sequence representations for
the storage of non-printable characters, such as the C language supports,
and since a Fortran statement must fit on one line (the compiler collapses
continued statement into a single long line), there is no straightforward
way to get a newline character into a string; it can only be done by using
string concatenation together with the built-in CHAR() function.

The maximum permissible length of a character string constant is im-
plementation dependent; many compilers have very severe length limits, as
small as 128, 256, or 500 characters. Such limits are dreadfully low; they
do not even allow the assignment of a constant string that spans the 19 per-
mitted continuation lines of a Fortran statement. Arrays have no size limit
other than that imposed by addressable memory; character strings ought
to have the same limit.

6 Fortran data storage

Because Fortran was designed to be machine-independent, it places only
modest requirements on the internal representation of its data types. IN-
TEGER, LOGICAL, and REAL are expected to take one ‘storage location’;
DOUBLE PRECISION and COMPLEX take two locations. A storage lo-
cation is expected to be whatever is convenient for the host computer; it has
been as small as 16 bits (minicomputers and microcomputers), and as large
as 64 bits (Cray supercomputer).

CHARACTER storage requirements are not specified by the Fortran
77 Standard. Word-addressable machines may have to resort to bit shifting
and masking to access characters if several are stored per word. Most mod-
ern machines are byte-addressable, so access to individual characters is fast
and efficient. Because of these differences, Fortran 77 explicitly prohibits
all storage association of CHARACTER and non-CHARACTER data via
argument passing, COMMON block storage, and EQUIVALENCE shar-
ing.
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Even though LOGICAL data really only require one bit of storage each,
Fortran gives them as many bits as an integer uses. The representation of
.TRUE. and .FALSE. is up to the compiler; it could be based on the sign bit,
the low-order bit (odd or even), zero and non-zero, or any other consistent
scheme.

7 Data representation

With the exception of some hand-held calculators that operate in decimal
arithmetic, almost all computers today use binary arithmetic, because sin-
gle bits (binary digits: 0 or 1) can be represented by switches that are on or
off, or by voltages that are high or low.

Storage addressing is usually not by individual bits, but rather by small
units like bytes (usually 8 bits, although other sizes have been used), or
words (8, 16, 18, 24, 32, 36, 48, 60, and 64 bits). Byte addressing, and
32-bit words, are the commonest schemes used today.

7.1 Integers

Integers can be represented by a fixed number of bits, usually the number
in a machine word. Three schemes are in use for handling signed integers:
sign magnitude, one’s complement, and two’s complement. One bit, usually
the left-most, is arbitrarily designated the sign bit. The remaining bits are
used for the integer value.

For an n-bit word, with one’s complement, and sign-magnitude, both of
which are now uncommon, there are 2n−1 − 1 positive numbers, and the
same number of negative numbers. There are two zeroes, one positive, and
one negative. The more common two’s complement representation has 2n−1

negative numbers, a single zero, and 2n−1 − 1 positive numbers.
For example, with a 16-bit word, these systems can represent either the

range -32767 . . . -0 +0 . . . +32767 (one’s complement and sign-magnitude),
or -32768 . . . 0 . . . +32767 (two’s complement).

Having two representations of zero adds extra complexity to the hard-
ware, but in the alternative two’s-complement system, which has only one
kind of zero, the absolute value of the most negative number cannot be
taken, since the corresponding positive value cannot be represented with-
out having an extra bit. A program that does take the absolute value of
such a number may produce negative results, because the integer overflow
results in wrap-around from a positive value to a negative one, and integer
overflow detection is usually disabled in Fortran.

To give a flavor for the decimal precision supported by common word
sizes, here is a table of the largest signed integers that can be represented:
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Word Largest Decimal
Size Signed Figures

Integer
8 127 2

16 32 767 4
24 8 388 607 6
32 2 147 483 647 9
36 34 359 738 367 10
48 140 737 488 355 327 14
60 576 460 752 303 423 487 17
64 9 223 372 036 854 775 807 18

128 170 141 183 460 469 231 731 687 303 715 884 105 727 38

For example, you would need 10 decimal figures to count the current world
population of about 5 billion people. The U. S. national debt is of the order
of a few trillion dollars (1 trillion = 1012); you would need at least 14 decimal
figures to total it up in dollars and cents. 32-bit integers are inadequate for
both of these jobs.

7.2 Floating-point values

In order to represent numbers needed in scientific calculations, it is nec-
essary to store both a fractional part and an exponent. Such a system is
called floating-point.

One of the new features of the IBM 704, the machine on which Fortran
was first implemented in 1956, was hardware floating-point arithmetic.
Without such arithmetic, programming becomes exceedingly tedious, be-
cause every arithmetic operation requires many machine instructions, usu-
ally relegated to a subroutine, and because each multiplication or division
can increase the number of bits that must be retained, so frequent rescaling
is necessary.

Curiously, many personal computers, including all of the low-end models
of the Apple Macintosh, lack floating-point hardware; compilers on such
systems permit programs to use floating-point arithmetic, but compile each
arithmetic operation into a subroutine call, at the expense of roughly a
factor of 100 in reduced performance.

To represent a floating-point number, we need to divide a word into three
parts: a sign, s, an exponent, e, of some base, B, and a fraction, f . The
fraction is constrained to lie in the interval 1/B ≤ f < 1. A floating-point
number, x, is then given by x = (−1)s × f × Be. The most common base
today is B = 2, but the IBM mainframe architecture uses B = 16. A few
older machines used B = 8.

We need to represent numbers that are both larger and smaller than
one, so in order to avoid storing an additional sign for the exponent, the
stored exponent is treated as an unsigned integer, and a bias of about half
the largest exponent is subtracted from it to obtain the true exponent.
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For reasons of hardware design, the same size of word that is used to
hold an integer is also used to hold a floating-point number. However, since
some of the bits have to be given up for the exponent field, fewer bits are
available for the fraction, so precision is sacrificed.

The number of bits in the exponent and the fraction varies between ar-
chitectures. With 32-bit words, typically 6 to 8 bits are chosen for the ex-
ponent, and 23 to 25 bits for the fraction. This gives 6 to 7 decimal figures,
whereas a 32-bit integer could represent 9 decimal figures.

The number range depends on the base chosen; a larger base increases
the number range, but has the undesirable effect of introducing wobbling
precision.

To see why, consider the IBM 360 choice of B = 16, with a 7-bit exponent
and a 24-bit fraction. The fraction lies in the range 1/16 ≤ f < 1, which in
binary is 0.00012 ≤ f ≤ 0.1111 . . . 1112. Notice that up to three leading zero
bits may be present in some numbers. This reduces the effective average
precision of the fraction from 24 bits to 21 bits, a loss of about one decimal
figure. The gain is that the exponent range is increased by a factor of two.

Accurate programming in such a system requires particular care. For
example, if you are summing a rapidly convergent series of the form 1+ax+
bx2 + · · · , intermediate sums will have three leading zero bits; if you rewrite
it as 8 + a′x + b′x2 + · · ·, intermediate sums have no leading zero bits, and
you can gain three extra bits of accuracy in the intermediate computations.

Similarly, in such a system, it is better to divide by 2/π = 0.A2F9. . . 16

than it is to multiply by π/2 = 1.921F. . . 16, because the first form has three
more significant bits.

Choosing base B = 2 eliminates the phenomenon of wobbling precision,
and most modern architectures now make that choice.

The 6 to 7 decimal figures supplied by 32-bit floating-point is often inad-
equate. Almost all floating-point hardware therefore provides double pre-
cision arithmetic as well. Two machine words are used to hold a single
number, and the number of fractional bits may be more than doubled; the
exponent may or may not be increased.

On 32-bit machines, 64-bit double precision numbers may have from 7
to 15 bits for the exponent, and from 48 to 57 bits for the fraction. This
provides number ranges as small as 10−76 . . . 1078 (IBM 360) and as large
as 10−2466 . . . 102465 (Cray). The corresponding decimal figures are 17 (IBM
360), and 14 (Cray supercomputer).

Floating-point numbers that are too small to represent are said to un-
derflow; such numbers may be silently forced to zero, or they may cause
a hardware interrupt which on a few antisocial Fortran implementations
terminates the job.

Floating-point numbers that are too large to represent are said to over-
flow. Some machines reset them to the largest floating-point number. A
few architectures have special representations for infinity which are used
instead.
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Indeterminate results, such as division of zero by zero, may produce
unpredictable results.

7.3 IEEE P754 floating-point arithmetic

Because of numerous undesirable features of older floating-point systems,
during the early 1980s, a committee under the IEEE was established to de-
fine a standard for floating-point arithmetic. They produced two such spec-
ifications, IEEE 754 for binary arithmetic [23], and IEEE P854 for arith-
metic in any radix [15].

The IEEE 754 standard defines three floating point formats:

Name Total Exponent Fraction Decimal Number
bits bits bits figures range

short real 32 8 24 7 8.43E-37 . . . 3.37E+38
long real 64 11 53 15 4.19E-307 . . . 1.67E+308
temporary real 80 15 64 19 3.4E-4932 . . . 1.2E+4932

The sharp-eyed reader will have noticed that in the short and long real
forms, the sum of the numbers of sign, exponent, and fraction bits is one
more than the total in the second column. The reason is that these two
forms have an extra hidden bit which is not stored; in the gradual underflow
region (see below), the hidden bit is not used. The hidden bit is a hardware
trick to pick up an extra bit of precision for free. It is possible to do this by
requiring the fraction to be normalized; that is, when the base is 2, there are
no leading zero bits in the fraction. A few other floating-point architectures
use the same trick.

Almost all new computer architectures introduced since 1985 have used
the IEEE 754 format, including Intel 80x8x, Motorola 68xxx and 88xxx,
MIPS, Stardent, and Sun SPARC chips, and at least one vendor, Convex,
has retrofitted support for the IEEE 754 format. These CPUs are the ones
used in almost all personal computers and workstations. Most vendors have
implemented only the short real and long real forms; only Intel has imple-
mented the 80-bit temporary real format.

Prior to the IEEE 754 standard, both DEC and IBM had introduced 128-
bit floating-point formats to satisfy demands for even more decimal figures.

DEC uses a 15-bit exponent of two, and a 113-bit fraction, for a precision
of about 34 decimal figures, and a range of 8.405E-4931 . . . 5.949E+4931.

IBM’s representation allocates a 7-bit exponent of sixteen, and a 112-bit
fraction (three leading bits of which may be zero; see the wobbling precision
discussion in Section 7.2 on page 8), for a precision of 32 decimal figures,
and a range of 5.398E-77 . . . 7.237E+76. One byte of the 16-byte number
is not used.

Fortran of course only offers two floating-point precisions, REAL and
DOUBLE PRECISION, so vendors have had to extend Fortran to make
these higher precisions available to the programmer. The 1983 ANSI Ada
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Standard [3] and the 1989 ANSI C Standard [5] are the first to explicitly in-
corporate support for three (or more) floating-point precisions. The Fortran
90 proposal does too.

Most IEEE 754 arithmetic implementations carry out all intermediate
computations in the highest supported precisions, then, if lower precision
is needed, round the results to the smaller size. The extra accuracy of in-
termediate results is usually beneficial, and importantly, the cost of doing
computations in higher precision is negligible (lower precision can even be
slower, because of the additional conversions needed).

IEEE 754 introduced several new ideas for floating-point arithmetic,
excellent discussions of which can be found elsewhere [14, 16, 17, 18, 22].

The most important features of IEEE 754 arithmetic are:

• Explicit representation of signed and unsigned infinity.

• Explicit representation of undefined values, called NaNs (Not A Num-
ber); they can be quiet (non-interrupting), or signalling (interrupting).

• Gradual underflow, so that below the normal underflow limit, preci-
sion is allowed to decrease to widen the floating-point range.

• Programmer control of rounding or truncating, with round-to-nearest,
round-up, round-down, and round-to-zero. The default is round-to-
nearest; the other modes permit the efficient implementation of inter-
val arithmetic.

Infinities are generated by dividing non-zero values by zero, or by bi-
nary operations involving an infinite value (except non-zero/infinity, which
produces zero). NaNs are generated by dividing zero by zero, or by binary
operations involving a NaN. The default action is that both infinities and
NaNs propagate without interrupting execution.

The presence of an infinity or a NaN in final results is an indication
that something abnormal has happened. Floating-point modes can be set
to cause interrupts when either is generated, so the offending code can be
identified and corrected.

NaNs have a unique property: they are the only floating-point values
that compare unequal with themselves. This is easy to express in Fortran
code:

IF (x .ne. x) PRINT *,’x is a NaN’

NaNs are useful return values for functions whose values are undefined
for certain arguments, such as the square root or logarithm of negative
numbers. You can generate a compile-time NaN by dividing zero by zero:

REAL NaN
. . .
NaN = 0.0/0.0
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Curiously, several compilers I tried refused to accept 0.0/0.0 in a PARAM-
ETER statement.

To generate a NaN at run time that can be trapped by an interrupt
handler, you have to trick the compiler into delaying the division until run
time. On the current SunOS Fortran compiler, this code suffices:

x = 0.0
x = x / x

A really smart compiler might still handle this at compile time; in such a
case, you could do something like this:

x = divide(0.0,0.0)
. . .
REAL FUNCTION divide (x,y)
REAL x,y
divide = x/y
END

where the divide routine is compiled separately, so the compiler is ignorant
of what it really does, and cannot compute its result at compile time.

8 Fortran statement layout

Fortran statements are laid out according to the now-obsolete 80-column
punched card. Except inside character strings, blanks are not significant
anywhere in the Fortran language; it is legal (if of dubious value) to embed
blanks in names. The one place where embedded blanks are occasionally
useful is to improve the readability of long numeric constants:

* MAXINT = 2**31 - 1
MAXINT = 2 147 483 647

* ROOTHF = sqrt(0.5)
ROOTHF = 0.70710 67811 86547 52440 08443 62104 E+00

In comment statements, column 1 is used for the comment starter, which
is a C or an asterisk.

In non-comment statements, columns 1–5 hold an integer statement la-
bel. Leading zeroes, and blanks before, after, or inside, the statement num-
ber are not significant. Column 6 is a continuation!column; on the initial
line of a multi-line statement, it must be blank or zero. Columns 7–72 hold
the text of the statement.

For multi-line statements, on continuation lines, columns 1–5 must be
blank, and column 6 must hold a character from the 49-member Fortran
character set, other than blank or zero. Up to 19 continuation!line can be
specified, so the longest legal Fortran statement is 72 + 19× (72− 6) = 1326
characters.
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Anything appearing after column 72 is ignored by the compiler; on
punched cards, columns 73–80 were used to hold an 8-digit sequence num-
ber that you were grateful for on the day you dropped your deck of punched
cards on the floor.

On modern display screens, it is usually not possible to see whether
text extends beyond column 72. It is therefore useful to have an intelligent
text editor that can test for such instances, or a utility that can do so. For
example, in the local GNU Emacs installation, the functions M-x check-
line-length and M-x show-long-lines written by this author will find
lines longer than their numeric argument, which defaults to 72 characters
if omitted. On any system for which the awk(1) utility is available, the
simple command

awk ’length($0) > 72 { print $0 }’ file1 file2 . . . filen

will find problem lines in the listed files.

9 Fortran statement order

Like most programming languages, Fortran has definite rules about the
order in which statements must appear in a program. In general, definition
must precede usage.

This table is taken from the Fortran 77 Standard [2, p. 3-4]:

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statement

IMPLICIT
PARAMETER statements

statements Other
FORMAT specification

Comment and statements
Lines ENTRY Statement

statements function
DATA statements

statements Executable
statements

END statement

From the table, one can conclude that comment statements can go any-
where before the END statement. IMPLICIT statements precede other
specification statement. PARAMETER statements can come anywhere in
the specification statement section.
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10 Fortran statement syntax

In the following subsections, we give a short summary of the syntax of
each of the various Fortran statements. Boldface text is used for Fortran
keywords and other symbols that are required; lower-case text represents
things you supply. Italics mark phrases that must be replaced by a Fortran
keyword. Ellipses (. . . ) mark the presence of other Fortran statements.

The order of discussion largely follows the precise descriptions in the
Fortran 77 standard [2], but is considerably less formal.

10.1 Comments

Comments are written by placing a C in column 1, followed by the text of
the comment. Blank lines were explicitly forbidden in Fortran 66, but were
legalized in Fortran 77, which considers any line in which columns 1–72
are blank to be a comment.

Fortran 77 made it legal to use an asterisk in column 1 instead of a C, a
rather unnecessary and useless extension. What is needed is a facility for
an in-line comment. A few existing compilers, and Fortran 90, provide this
in the form of an exclamation point (‘bang’ for short in computer jargon);
the comment continues from that character to the end of the current line.
However, such usage should be strictly avoided so as not to compromise
code portability.

Fortran 77 permits comments to appear between continuation lines of
a multi-line statement. However, earlier compilers, and some tools that
process Fortran text, do not, so the practice should be scrupulously avoided.

10.2 Routine header statements

Fortran program modules can be classed into one of four cases: main pro-
grams, subroutines, functions, and BLOCK DATA routines. These cases
are distinguished by a header statement.

10.2.1 PROGRAM statement

A main program may optionally be started with a PROGRAM statement:

PROGRAM program-name

If there is no header statement (the usual case), then a main program is
assumed.

Every executable program must have exactly one main program. When
a job is initiated, the operating system kernel starts it executing at its ini-
tial entry point, which is always somewhere in the run-time library. After
performing whatever initialization chores are needed, the Fortran run-time
library calls the main program, and regains control when the main program
terminates, or a STOP statement or a CALL EXIT statement is executed.
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The run-time library does whatever cleanup actions are needed, such as
closing files still in use, and then returns to the operating system kernel.

Standard Fortran does not permit a RETURN statement to appear in a
main program.

10.2.2 SUBROUTINE statement

A subroutine can only be invoked by a CALL statement. Arguments can
be passed to the subroutine from the calling program; the associations be-
tween arguments in the calling and called routines is made at run time, at
the point of the call.

SUBROUTINE subrtn-name
SUBROUTINE subrtn-name ( )
SUBROUTINE subrtn-name ( arg1 , arg2, . . . , argn )

If the subroutine has no arguments, then either of the first two forms can be
used, and the CALL statement may be written with or without the paren-
theses:

CALL subrtn-name
CALL subrtn-name ( )

If arguments are declared on the SUBROUTINE statement, they must be
matched one-for-one by arguments in a corresponding CALL statement;
it is an error for the number of arguments in the two statements to be
different.

A subroutine does not return any value, but it may change its argu-
ments, as well as any global data in Fortran COMMON.

Recursion is not supported in Fortran; no routine may call itself, either
directly, or indirectly.

10.2.3 FUNCTION statement

A function is a routine that returns a single value of a particular data type.
As with a SUBROUTINE, its arguments must be matched one-for-one in
the calling and called program units, and recursion is forbidden. Functions
are invoked by name; they may not be invoked by a CALL statement. Like
subroutines, functions may change their arguments, as well as any global
data in Fortran COMMON. However, such action is generally considered
bad programming practice; as a rule, functions should be free of side effects
and I/O statements, modify neither their arguments nor any global values,
and return a single value to their caller.

Prior to Fortran 77, functions were required to have at least one argu-
ment, even if that argument was an unused dummy variable. Fortran 77
extended the language to permit functions with zero arguments, but unlike
subroutines, such functions must be declared and referenced with an empty
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pair of parentheses. These empty parentheses are needed to distinguish be-
tween a variable name and a function name, since Fortran does not require
prior declaration of names.

type-name FUNCTION function-name ( )
type-name FUNCTION function-name ( arg1 , arg2, . . . , argn )

The type-name value must be one of the six standard Fortran data types:
CHARACTER or CHARACTER*n or CHARACTER*(*) , COMPLEX,
DOUBLE PRECISION, INTEGER, LOGICAL, or REAL.

Inside the function, the function-name is treated like an ordinary typed
variable, and the last value assigned to it is the value that the function
returns to the program unit that invoked it.

Control returns from a FUNCTION or SUBROUTINE to their caller
by execution of a RETURN statement. Fortran 77 extended the language
to allow the END statement to do the same thing; previously, its sole pur-
pose was to inform the compiler where the end of the program unit was.
Modern programming practice is to avoid the use of the RETURN as much
as possible, and let END do the job.

10.2.4 BLOCK DATA statement

The last program unit class is the BLOCK DATA:

BLOCK DATA
BLOCK DATA block-data-name

This program unit is not executable. It cannot be called, or in any way
referenced by name from another program unit. It may contain only speci-
fication statements, and DATA statements; executable statements are for-
bidden.

Fortran 77 extended the language to permit named BLOCK DATA pro-
gram units, but they are of limited utility, except on systems where the
loader or linker refuses to allow more than one such program unit, in which
case, they must be given unique names.

The primary use of BLOCK DATA is for initializing global data in
COMMON, but this is fraught with peril in large programs. Since the
BLOCK DATA routine cannot be called, there is no way to ensure that it
will be loaded from a library by the linker or loader; it must be explicitly
loaded by name, and if the user forgets to do so, the data initializations will
all be lost.2

2As a graduate student, I once spent several days debugging a large program that had
suddenly stopped executing correctly; the error turned out to be the loss of a BLOCK DATA
routine in the loading phase.
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10.3 Specification Statements

Specification statements tell the compiler about the attributes of variables,
but are not themselves executable. They must appear before all statement
functions, DATA statements, and executable statements in the program,
and after any header statement.

10.3.1 Type declarations

The names of Fortran scalars, arrays, and function names can be declared
by specification statements of the form

type-name var1, var2, . . . , varn

type-name must be one of CHARACTER or CHARACTER*n or CHAR-
ACTER*(*) , COMPLEX, DOUBLE PRECISION, INTEGER, LOGI-
CAL, or REAL.

One or more variable names may be given following the type-name; if
there is more than one, they are separated by commas.

For character variables, if the *n length modifier is omitted, CHARAC-
TER*1 is assumed. The length modifier may be replaced by (*) in two
circumstances: for a variable which is an argument of the current program
unit, and for a constant string in a PARAMETER statement. In either
case, the length is determinable.

If the variables are arrays, they should be followed by a parenthesized
dimension list, as described elsewhere. Names of scalars and functions
must not be followed by parenthesized lists.

Any number of specifications statements can be given in a single pro-
gram unit, and they can be in any order.

To make life easier on the human reader of the program, it is always a
good idea to order variables and declarations systematically. Alphabetical
order is usually best. In all but trivial programs, it will be helpful if some
commentary is included to describe what each variable is used for. Here are
samples of a style I have found useful:

C
C AFMFIL...............Base name of the configuration file.
C

CHARACTER*12 AFMFIL
PARAMETER (AFMFIL = ’afmfiles.dat’)

C
C MAXLIN...............Longest input line.
C

INTEGER MAXLIN
PARAMETER (MAXLIN = 255)

The author’s Extended PFORT verifier [20, 28], pfort(1) , has an op-
tion to produce declarations organized like this:
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C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C EXTERNAL REFERENCES (FUNCTION,SUBROUTINE,COMMON)
C
C EXTERNAL REFS ERRAI, ERRCK, ERRMS, MAX0
C EXTERNAL REFS MOD, UTRCA
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C INTRINSIC FUNCTIONS
C

INTEGER MAX0, MOD
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C STATEMENT FUNCTIONS
C

LOGICAL ODD
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C NON-COMMON VARIABLES
C
C SETS DASHSV, DIGIT, IERVAL, INSTYL
C SETS IPATSV, IPT1SV, K, L
C SETS LAST, LSSOFT, MAXPAT, NPATSV
C SETS PATLEN, SAVOFF, SAVPAT, SIZE
C

INTEGER DIGIT, IARG, IERVAL(1), INSTYL
INTEGER IPATSV, IPT1SV, K, L
INTEGER LAST, LSSOFT(9), LSTYLE, MAXPAT
INTEGER NPATSV
LOGICAL DASHSV
REAL PATLEN, SAVOFF, SAVPAT(25)
REAL SIZE(10)

Alphabetical order is adhered to; the initial comments indicate whether the
variables are changed in the current program unit. External references are
given in comments, and functions are declared before scalars and arrays.

Unfortunately, PFORT does not know about Fortran 77 block-IF state-
ments, or the CHARACTER data type, so it is not as useful as it once was.

10.3.2 DIMENSION statement

Fortran permits arrays to be declared without a dimension list in a type
declaration, if the dimensions are supplied in a specification statement of
the form

DIMENSION var1(dimlist), . . . , varn(dimlist)

where dimlist is a comma-separated list of constant dimension limits.
This statement is completely unnecessary, and should be avoided in For-

tran programming. Put the dimension information in the type declaration
statement.
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10.3.3 EQUIVALENCE statement

On older machines with limited memory, storage economization was of
prime importance in large programs. Newer machines have very much
larger memory spaces, and except for personal computers and the Cray
supercomputer, almost all have virtual memory, so this problem is much
less severe than it used to be.

Fortran 77’s SAVE statement (see Section 10.3.9 on page 24) together
with stack allocation provides a means to reduce data storage require-
ments.

The Fortran EQUIVALENCE statement was introduced as a means to
inform the compiler that two or more different variables (usually arrays)
could share the same storage locations, because the programmer had ar-
ranged to complete the use of one of them before using any of the others.
This statement looks as follows:

EQUIVALENCE (var-a1, . . . , var-an), . . . , (var-k1, . . . , var-kn)

Each variable may be either a scalar, or an array name, or an array element.
Because this statement merely informs the compiler to assign the variables
to the same starting location in memory, it is illegal to produce conflicting
requests, such as this one:

REAL A(30)
INTEGER B(30)
EQUIVALENCE (A(1), B(1))
EQUIVALENCE (A(21), B(17))⇐= illegal!

The use of storage equivalencing can introduce serious, and often difficult-
to-find, bugs if the same storage location is used simultaneously for more
than one variable. Consequently, such use of the EQUIVALENCE state-
ment is strongly discouraged in modern programming.

However, the EQUIVALENCE statement does have a legitimate use in
low-level primitives for numerical software. For example, in order to write
a function to set or get the sign, exponent, or fraction fields of a floating-
point number, one requires bit primitives to access the data, and storage
equivalencing to allow access to floating-point values as integer words or
bytes.

Here is an example, taken from a set of primitives required for the im-
plementation of the Fortran elementary functions [14]:

double precision function dsetxp (x,n)
* (Set exponent of x)
* SunOS UNIX version for Sun 3 Motorola or Sun 4 SPARC
* architectures, but not for the Sun 386i, because the Intel 386
* has a different byte order.
* [14-Nov-1990]

double precision wf, x
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integer n, wi(2)

* Force storage overlay so we can twiddle bits
equivalence (wi(1), wf)

wf = x

* Zero exponent field
wi(1) = and(wi(1),z’800fffff ’)

* Or in the new exponent field
wi(1) = or(wi(1),lshift(and(1022 + n,z’7ff ’),20))

dsetxp = wf

end

In this function, the double precision value, wf , is storage equivalenced
with an integer array, wi(2), which allows access to the high-order and low-
order words of wf .

10.3.4 COMMON statement

In Fortran, non-argument variables declared in a routine are local to that
routine; they cannot be known elsewhere, unless they are received or passed
as arguments. This is a form of information hiding, which is absolutely es-
sential for reducing the complexity of programming. In suspense novels,
spies are told only what they ‘need to know’ in order to limit damage if they
are interrogated by the enemy. In programming, reducing the degree of
visibility of each item of data likewise reduces the potential for damage.

When routines that call one another need to share data, it is possible to
pass the data as routine arguments. However, in large programs, it may be
necessary to share data between routines that do not call one another, and
some mechanism is needed to provide that capability. Scratch files can of
course be used, but I/O is much slower than direct memory accesses. The
solution is global data. In Fortran, the COMMON statement provides a
means for declaring such data. It defines an area of memory, either un-
named (‘blank’ COMMON), or named, where the name is specified in the
COMMON statement:

COMMON var1, var2, . . . , varn
COMMON / / var1, var2, . . . , varn
COMMON / name / var1, var2, . . . , varn

The first two forms define a blank COMMON, and the third form, a COM-
MON named name. If multiple COMMON statements with the same name
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are given, then their variable lists are implicitly appended in order of their
occurrence.

The compiler will output information in the object file that tells the
loader or linker to create an area of memory named by the COMMON
name, and then to place the COMMON variables in that area, in the same
order in which they were listed in the COMMON statement. It is impor-
tant to note that only the name of the memory area is known to other rou-
tines; the individual storage locations are unnamed. This is quite different
than the global storage mechanisms of more modern languages, where each
global variable names a storage location.

Multiple routines that declare the same COMMON blocks can then
share the same data, without having to call one another, or write scratch
files to exchange the data.

Consider, for example, a graphics library. It needs to maintain a consid-
erable amount of ‘state information’ (whether the current output device is
open, what its name is, what the current point is, what the current trans-
formation matrix is, and so on). It would be unacceptable if all of this infor-
mation had to be passed through arguments of the graphics routines. This
would expose the details of the internal state to every routine in the call
chain. Changes in the amount of state information would require changes
in a large number of places. Execution would be slowed by all of the addi-
tional arguments that had to be passed. In such a case, global data provides
a satisfactory solution.

Fortran’s COMMON mechanism is far from ideal however. First of all,
it is not required that each routine declare the same set of variables in a
particular COMMON block. Older code often used this as another trick for
storage economization, just like the EQUIVALENCE statement. However,
imagine that the COMMON variables were expected to be the same every-
where, but that in one routine, they accidentally differ: you have an instant
bug that may be very hard to find.

The second problem is that many architectures, including all modern
RISC architectures, impose constraints on storage alignment. DOUBLE
PRECISION values must start on a double-word boundary, REAL, INTE-
GER, and LOGICAL values on a single-word boundary, and CHARAC-
TER values on a byte boundary. If the COMMON block contains data of
mixed types, it is possible to create illegal storage alignments. The com-
piler may refuse to accept the code, or an expensive run-time fixup may be
needed to access the misaligned data.

The third problem is that undisciplined use of COMMON tends to in-
troduce serious bugs, and make too much data visible in too many places.
Consider for example, the novice programmer who places a variable named
K in a COMMON block; such a variable is very likely to be used as a loop
index in many places, and chaos will result if it is reused in a routine called
from a loop where it is in use as an index.

The fourth problem is that standard Fortran does not have an IN-
CLUDE statement that would permit the programmer to put the COM-
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MON declarations in a file that was then referenced in an INCLUDE state-
ment everywhere the COMMON block was needed. Keeping the informa-
tion in one place is the only way to ensure that it does not become incon-
sistent. This is a case where the issues of reliability and maintainability
override portability: if your compiler supports an INCLUDE statement,
use it for all COMMON declarations. It is not hard to write a simple pre-
processor to process INCLUDE statements on machines that lack them.
Fortran 77 should have introduced this statement, but did not. Fortran 90
does.

The fifth problem is one of data initialization, discussed further in Sec-
tion 10.2.4 on page 15 and Section 10.5 on page 27. Named COMMON
variables may only be initialized by DATA statements in BLOCK DATA
routines, and variables in blank (unnamed) COMMON cannot be initial-
ized by DATA statements anywhere. Blank COMMON is a relic of older
loaders that reserved a single unnamed area of memory for such storage;
on some systems, the size of the area could be adjusted at run time, giving
a very primitive means for dynamic storage allocation in Fortran. The ob-
ject code for large programs, where COMMON is most often needed, tends
to be stored in load libraries, but since BLOCK DATA routines cannot
be referenced by any Fortran routine, there is no way to guarantee that
the initializations in a BLOCK DATA routine will be loaded. This makes
BLOCK DATA almost useless in practice, and the programmer is forced to
resort to run-time initializations, which can be thwarted if the programmer
then forgets to arrange for a call to the initializing routine.

In summary, then, COMMON blocks are one of the most dangerous
areas of Fortran, and the programmer is advised to avoid them except in the
rarest circumstances, and when they are unavoidable, to use them with the
utmost discipline and discretion, keeping their definitions in separate files
that are merged into the source code at compile time with an INCLUDE
statement.

10.3.5 IMPLICIT statements

Fortran does not require type declarations for scalar or function names.
Untyped names are assigned a type based on the first letter of their names:
initial I through N means an INTEGER variable, and initial A through H
or O through Z implies that the variable is REAL.

Most languages invented since Fortran have required explicit variable
typing, for two reasons. First, when typing is optional, spelling errors may
go undetected, leading to very hard-to-find bugs when a mis-spelt variable
is assigned a value, and then later used under its correct name, or vice
versa. Second, modern languages have a much richer repertoire of data
types, and it is unreasonable to single out two of them, as Fortran does, as
default types.

Fortran 77, and a few earlier compilers, introduced the IMPLICIT state-
ment to provide a means to change the default typing rules:
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IMPLICIT type-name ( a, a, . . . ), type-name ( a, a, . . . ), . . .

Each a is a single letter, or a range of single letters in alphabetical order,
denoted by a letter pair separated by a hyphen. Variables beginning with
those letters have default types given by the preceding type-name. Thus,

IMPLICIT INTEGER ( A-Z )

makes all variables default to INTEGER type, and

IMPLICIT INTEGER ( I - N ), REAL ( A - H , O - Z)

corresponds to Fortran’s default typing.
The major use of the IMPLICIT statement in older programs is con-

verting between single and double precision:

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IMPLICIT REAL (A-H,O-Z)

Modern practice is to use explicit typing, supported by compiler options that
check for undeclared variables.3

Fortran 90, and a few existing compilers, permit an extension of the
IMPLICIT statement in the form

IMPLICIT NONE

This disables all default typing, so untyped variables will cause a compi-
lation error; in this form, there can be only one IMPLICIT statement in
the program unit, and it must precede all PARAMETER and specification
statements. However, since it is not standard, its use is discouraged, except
for debugging purposes with compilers that lack a compile-time option to
check for untyped variables.

Avoid use of the IMPLICIT statement, except possibly for debugging
purposes.

10.3.6 PARAMETER statements

Fortran 77 introduced the PARAMETER statement as a means of declar-
ing symbolic constants in Fortran programs. Before 1978, a few compil-
ers had already implemented such a facility using a syntax similar to that
of a type declaration (PARAMETER var = value); the variable was sim-
ply another name for the value, and automatically took on the type of the
value. Regrettably, Fortran 77 changed the syntax, and introduced typed
parameters, so that the value is converted to the type of the variable. The
statement looks as follows:

PARAMETER ( name = constant-expression )

3On Berkeley UNIX, IBM AIX, and SunOS, the Fortran compiler option -u provides this
service. On Stardent UNIX, -implicit does the job. On Apollo systems, use -type . On the
IBM PC with the Lahey compiler, use /0 . On VAX VMS, /WARNINGS:DECLARATIONSsuffices.
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As a general rule, the type of the name should be declared in an immedi-
ately preceding type statement, with some helpful commentary:

C MAXCHR is the number of characters in the host character set.
INTEGER MAXCHR
PARAMETER (MAXCHR = 256)

C HELLO is the startup banner message
CHARACTER*(*) HELLO
PARAMETER (HELLO = ’This is Matlab, version 1.2’)

10.3.7 EXTERNAL statement

Fortran permits routines to be passed as arguments. An example might be
an integration routine that can integrate any function passed by the user.

When a routine name appears in an argument list of a CALL statement
or a function reference, the compiler cannot tell whether the name is a
variable or a routine. The programmer must supply that information in a
specification statement of the form

EXTERNAL rtn1, rtn2, . . . , rtnk

Here, each rtni is the name of a routine which is received or passed as an
argument in the current routine.

Used for this purpose, the EXTERNAL statement is both legitimate,
and essential.

However, the EXTERNAL statement does one other job: it tells the
compiler that the routine is not a built-in (intrinsic) function. For example,
in the code

EXTERNAL SQRT
. . .
PRINT *,SQRT(0.5)

the SQRT routine must be one defined by the user; it need not even compute
a square root.

This second usage of the EXTERNAL statement is absolutely not rec-
ommended, because it can lead to code that is hard to understand. Fortran
programmers are used to assuming that references to intrinsic functions
are just that; an EXTERNAL statement declaring them otherwise violates
that assumption.

10.3.8 INTRINSIC statement

Prior to Fortran 77, it was not possible in standard Fortran to pass an
intrinsic function as an argument to a routine, because the EXTERNAL
statement also made it a user-defined function.

Fortran 77 introduced the INTRINSIC statement to remedy this defi-
ciency:
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INTRINSIC rtn1, rtn2, . . . , rtnk

Each rtni must be the name of an intrinsic function. The effect is that each
such function is now available to pass as an argument.

Unfortunately, Fortran 77 introduced yet another arbitrary rule—these
functions are not permitted to appear in an INTRINSIC statement, or as
arguments to another routine:

• type conversion functions (INT, IFIX, IDINT, FLOAT, SNGL,
REAL, DBLE, CMPLX, ICHAR, CHAR),

• lexical relationship functions (LGE, LGT, LLE, LLT), and

• minimax functions (MAX, MAX0, AMAX1, DMAX1, AMAX0, MAX1,
MIN, MIN0, AMIN1, DMIN1, AMIN0, MIN1).

10.3.9 SAVE statement

Until modern stack-based architectures became routinely available, For-
tran was always implemented in such a way that local variables (those de-
clared inside routines that are neither arguments, nor in COMMON) were
placed in static storage, that is, storage that was used for only one purpose
during the execution of a single job.

Thus, programmers could assume that a local variable set on one call
would retain its last value on a subsequent call. An example of where this
is useful is a routine that needs some first-time initializations that cannot
be handled by DATA statements:

SUBROUTINE sample
LOGICAL first
DATA first / .true. /
IF ( first ) THEN

. . . initializations. . .
first = .false.

END IF

The initializing code would be executed only on the first call, because at the
end, the flag first is reset to .false., so subsequent calls will not execute the
body of the block IF statement.

This practice is widely used in older code. Unfortunately, with modern
stack architectures, compilers may choose to place all local variables on the
stack, which is an area of memory that is provided afresh to each invocation
of a routine. This offers reduced storage requirements for the program, and
on many systems, improved execution speed when the hardware has been
designed to make stack accesses faster than normal memory accesses.

A compiler that used stack allocation, instead of static storage, for local
variables would break a lot of existing code, and several compilers do ex-
actly that. Good ones offer a compile-time option to force static allocation
for locals.
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Fortran 77 came to the rescue with a new concept: the SAVE statement.
As a simple declaration of the form

SAVE

it declares that all local variables must be placed in static storage, so their
values are saved across invocations of the program unit.

Alternatively, a list of scalar and array variables, or named COMMON
block names enclosed in slashes, can be given by

SAVE var1 , var2 , . . . , varn

so that only those variables are allocated statically; other locals may be
stored on the stack.

Here is an example:

SAVE foo, bar, /glob01/, / stuff /

This saves the local variables foo and bar, as well as the contents of the two
COMMON blocks glob01 and stuff .

10.3.10 NAMELIST statement

The NAMELIST statement defines a collection of one or more variables
that may be input or output with namelist I/O statements. Its syntax some-
what resembles that of a COMMON statement:

NAMELIST / namelist-name / var1, var2, . . . , vark

However, unlike COMMON blocks, namelist groups must be defined in a
single NAMELIST statement. This is unfortunate: the syntax is unusual,
and the length of the namelist group is limited by how many variables can
be put in a single Fortran statement. Fortran 90 fortunately remedies that
deficiency.

When namelist input is read, the namelist-name is used in the input
stream to identify the namelist group ( marks spaces visibly):

 $namelist-name
 var2 = value2,
 var1 = value1, var17 = value17,
. . .
 $END

The variable = value pairs are in free format, in any order, even duplicated
(the last assignment is the one that survives), with the exception that col-
umn 1 may not be used, because on namelist output, it is used for Fortran
carriage control, and output files must be readable as input files.

When namelist output is written, the variables are printed in the order
they appear in the NAMELIST statement. The appearance of the namelist
output depends on the implementation; it may have one variable per line,
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or several, and Repeat factors may or may not be used in front of repeated
data values. However, it is guaranteed to be readable by a namelist READ
statement.

Namelist I/O was introduced by IBM in the early 1960s, and has been
implemented by many vendors, even though it was not included in the For-
tran 77 Standard (it is in Fortran 90). It has a several important advan-
tages over list-directed and formatted I/O:

• Programs with numerous input options can supply default values be-
fore issuing a namelist READ, so that only the variables for which the
defaults are not adequate need be specified in the input. This feature
can be exceedingly useful in reducing the complexity of user input to
programs with many input options.

• Input values are associated with a name, rather than an arbitrary
column position or list position.

• Because duplicate assignments are permitted, namelist input can be
modified by simply adding new assignments before the $END; the
original assignments can remain unmodified.

• On a READ, the file is flushed until the $namelist-name is found in
column 2; these flushed lines can contain arbitrary comments if de-
sired.

• Namelist output is very handy for debugging, since it provides vari-
able names as well as their values.

For arrays, the input stream can contain multiple values, including val-
ues prefixed by a repeat count and an asterisk, just as for list-directed I/O.
If an array element is specified in the input stream with multiple data val-
ues, the values go into the array in memory order, starting at the location of
the specified element. This makes it possible to input only part of an array.

10.4 Statement functions

Fortran provides a very rudimentary one-statement internal function called
a statement function. It is written as follows:

fun(arg1, arg2, . . . ) = expression

The function name, fun, should be declared in a preceding type declaration,
and the argument variables are dummies that may occur in the right-hand-
side expression.

The statement function must be placed after all specification statements,
and before all executable statements; see the diagram on page 12.

A statement function is local to the routine it is defined in; it cannot be
called from other routines.
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Statement functions are sometimes useful in shortening, and clarifying,
complicated expressions. For example, suppose you needed the cube root of
expressions in several places in one program unit. You could write some-
thing like this:

DOUBLE PRECISION cubert, xarg
. . .
cubert(xarg) = (xarg)**(1.0/3.0)
. . .
CALL foo (cubert(x), cubert(y), cubert(z**3/x**2))

Another example might be a statement function to test for a NaN in several
places:

LOGICAL isNaN
REAL argnan
. . .
isNaN(argnan) = (argnan .ne. argnan)
. . .
IF (isNaN(alpha)) PRINT *,’alpha is a NaN’

10.5 DATA statements

Before they are explicitly set by an assignment, local Fortran variables have
indeterminate values.

On some machines, memory is cleared to zero before starting a new job;
variables will then start out with zero values.

Other machines leave memory untouched when a new job is initiated,
so on them, uninitialized variables will have unpredictable values.

Uninitialized variables are the source of insidious bugs in a large amount
of software, and unfortunately, they are less likely to be noticed on those
machines that zero memory.

Perhaps someday, computer architects will begin designing memory sys-
tems with an extra bit in each addressable storage location; the extra bit
would be turned on throughout memory before a job was started, and turned
off as values were stored. Any attempt to use an uninitialized value could
then be caught by the hardware, so that a software change could be made
to fix the error.

One sometimes has variables whose values remain unchanged, or which
are reset after the first execution of a program unit, but must have some
particular value on the first entry.

Fortran offers the DATA statement to handle this case:

DATA var / constant-value /
DATA var1 / constant-value1 /, var2 / constant-value2 /, . . .
DATA arrayvar / constant-value1, . . . , constant-valuen /
DATA var1, var2, . . . , varn / constant-value1, . . . , constant-valuen /
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The compiler matches the constant data values with the variables, and then
outputs information in the object file that will cause the linker or loader to
initialize the memory locations of those variables with the specified values.

This initialization happens only when the program is first loaded into
memory for execution. If the variables are subsequently assigned new val-
ues, their original values from the DATA statement are lost.

The types of the variables and the data items must match; if they do
not, the action taken is compiler-dependent.

Fortran 77 allowed a variable in a DATA statement to be an array name,
in which case as many constant values will be collected as there are storage
locations in the array. Earlier versions of Fortran permitted only individual
array elements to be initialized, which is clearly tedious when there are a
lot of them.

Because of Fortran’s statement length limit, initializations of large ar-
rays pose a problem. Fortran DATA statements allow a repetition factor in
front of a constant value, so a short code fragment like

INTEGER N(256)
DATA N / 128 * 32767, 128 * -32767 /

could be used to preset large numbers of array elements.
What does one do when there are more initializations than will fit in one

long continued statement? Fortran 77, and a few earlier Fortran compilers,
allow an implied-DO list, like those in I/O statements:

INTEGER N(256)
DATA (N(K), K = 1,128) / 128 * 32767/
DATA (N(K), K = 129,256) / 128 * -32767/

This permits cross-sections of an array to be initialized, so long initializa-
tion statements can always be broken up into several shorter ones.

10.6 Assignment statement

Fortran assignments are reasonably simple:

var = expression

The left-hand side must be a scalar variable, an array element, or a char-
acter substring; array assignments are illegal.

The right-hand side can be any legal Fortran expression.
There is no guarantee which side of the statement is evaluated first; this

could matter if the left-hand side contained function references and those
functions had side effects.

Regrettably, Fortran 77 introduced another unnecessary restriction. In
a character assignment, the left-hand-side variable may not appear any-
where on the right-hand side. This was done to eliminate the ambiguity
of how assignment of overlapping strings is handled. While this is easy
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enough for the programmer to enforce when the left-hand-side variable is
local, it is impossible when both sides contain variables that are arguments.
In such cases, character assignment must be handled through local tempo-
rary variables in two steps.

10.7 Control statements

Fortran’s control statements are noticeably weak, and structured Fortran
preprocessors such as Ratfor [24] and SFTRAN3 [26] have been advocated
by many, and are widely used. It is very regrettable that Fortran 77 did
not introduce enough new control structures to make such preprocessors
unnecessary; that has only happened with the Fortran 90 draft proposal.

Fortran’s weak control statements lead to programming practices that
produce code that is unmaintainable and unverifiable. I am fond of quoting
a particularly bad example that I once encountered: a 150-line routine with
about 50 statement labels, and 29 three-way branch IF statements. That
code has 329 = 6.86× 1013 execution paths.

If you cannot use a structured Fortran preprocessor, then you must ex-
ercise particularly strong discipline and restraint in coding flow control in
Fortran.

10.7.1 GOTO statement

The GOTO (or GO TO, since blanks are not significant) statement is in
the view of many the root of most flow-control problems in programming
languages. E. W. Dijkstra in 1968 published a famous letter [19] entitled Go
to statement considered harmful which spawned a large number of papers
in response, the most important of which is possibly Don Knuth’s [25].

Numerous languages designed since Dijkstra’s letter have been designed
without any GOTO statement.4

The GOTO statement is a simple translation of a hardware jump in-
struction that every computer has. It has been proven mathematically [13]
that sequential execution, conditional execution, and loops, are necessary
and sufficient constructs with which to write any program. If GOTO state-
ments are eliminated, they must therefore be replaced by at least one loop-
ing construct.

Loops can be classed into two major types: loops where the iteration
count is known before hand, and loops where the count is not known, but
instead, some test must be made at each iteration to determine whether
the loop can be exited. Fortran provides only the GOTO and IF statements
to implement this second class.

Fortran DO loops are the most obvious example of counted loops; see
Section 10.7.4 on page 32.

4Knuth joked that he had received a letter from Professor Eiichi Goto in Japan complaining
that he was always being eliminated.
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The other kind of loop requires a programmer-defined test for termina-
tion of the loop. If that test occurs at the beginning, it is called a while loop
(e.g. while (there is some input data) process that input data); this is the
most common case. If the test occurs at the end, it is called an until loop
(e.g. do (some work) until (the work is done)). A while loop will not be exe-
cuted if the initial test is false, but an until loop will always be executed at
least once.

Less commonly, the test may come in the middle of the loop.
Termination of loops is always a matter of concern, and every time you

program one, you should think about the loop invariant: what condition is
true during the execution of the loop, and when it becomes false, causes the
loop to exit?

With a Fortran DO loop, the loop invariant is that the loop index lies
between the initial and final limits, and is changed monotonically once each
iteration. That change in the index guarantees that eventually, the index
will be moved out of the limit range, and the loop will terminate.

In Fortran 77, you can implement a while loop as follows:

label IF (test) THEN
. . . do some work. . .
GO TO label

END IF

An until loop is not much harder:

label CONTINUE
. . . do some work. . .

IF (test) GO TO label

A loop with the test in the middle looks like

lab1 CONTINUE
. . . do some work. . .
IF (test) GO TO lab2
. . . do some more work. . .
GOTO lab1

lab2 CONTINUE

In each of these three cases, statements in the loop body must eventually
change the outcome of the IF test, so the loops can terminate.

Modern languages, and structured Fortran preprocessors, eliminate the
labels and provide exit statements to get out of the loop with the exit in the
middle.

The examples so far have all been of the simple GOTO. Fortran has two
other types, the assigned GOTO, and the computed GOTO. The assigned
GOTO is used like this:

INTEGER where
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. . .
lab1 CONTINUE

. . .
ASSIGN lab1 TO where
. . .
GOTO where (lab1, lab2, . . . , labk)

The assigned GOTO must have a list of all possible statement labels that
the integer variable has received by ASSIGN statements.

The computed GOTO uses a small integer value to index a list of state-
ment labels to jump to:

INTEGER where
. . .
where = 3
. . .
GOTO (lab1, lab2, . . . , labk), where

If where is 1, control passes to the statement having the first label in the
list; if 2, to the statement with the second label, and so on.

In both the assigned and the computed GOTO statements, it is an error
if the integer value requests a label that is not in the list.

Neither of these statements should ever be used in normal program-
ming. They find application primarily in the code generated by structured
Fortran preprocessors.

10.7.2 ASSIGN statement

Fortran permits a statement label to be assigned to a variable with an AS-
SIGN statement (not an assignment like var = value), and subsequently
used in an assigned GOTO statement. An example is given in Section 10.7.1
on page 30.

10.7.3 IF statement

Fortran has three kinds of conditional statements: the logical IF, the arith-
metic IF, and the block IF. The latter was first introduced in Fortran 77.

The logical IF takes the form

IF ( logical-expression ) statement

where statement is any Fortran statement, except a DO, a block IF, or an-
other logical IF.

The logical IF is very common, and convenient when only a single state-
ment is governed by the test.

The arithmetic IF looks as follows:

IF ( expression ) lab1, lab2, lab3
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The expression is evaluated, and control then passes to the statement la-
belled lab1 if the result is negative, to the statement labelled lab2 if the
result is zero, and otherwise to the statement labelled lab3.

The arithmetic IF is a direct reflection of a hardware instruction on the
IBM 704 in the 1950s which tested a numerical result, and jumped to one of
three following addresses, depending on whether the result was negative,
zero, or positive.

The arithmetic IF statement is strongly deprecated in modern program-
ming. In IEEE arithmetic, if the expression evaluates to a NaN, none of the
tests is true, and it is compiler dependent which of the three labels is se-
lected.

The third kind of conditional statement is the block IF. It takes the form

IF ( expression-1 ) THEN
. . .

ELSE IF ( expression-2 ) THEN
. . .

ELSE IF ( expression-3 ) THEN
. . .

ELSE
. . .

END IF

In the block IF, there may be zero or more ELSE IF statements, and zero
or one ELSE statement, which must follow all ELSE IF statements. The
last statement must be END IF. There can be zero or more statements
following each IF or ELSE IF statement.

Block IF statements must be properly nested.
Each IF or ELSE IF test is tried in turn, and the first one that is true

results in the execution of the immediately following code block. Execution
then passes to the statement following the terminating END IF statement.

If none of the tests evaluates to true, then the ELSE block is executed.
If there is no ELSE statement, control passes to the statement after the
END IF.

It is good programming practice to indent the statements in each of the
IF and ELSE blocks.

It is illegal to transfer into the body of a block IF statement with a
GOTO from outside the block IF. Jumping out of a block IF is permitted.

The availability of the block IF has completely removed the need for
the arithmetic IF statement, and also substantially reduces the number of
labels needed in Fortran programming. It is only regrettable that it took 23
years to become a part of the Fortran language.

10.7.4 DO statement

The Fortran DO statement provides one useful kind of loop, the counted
loop; for other types, see the discussion in Section 10.7.1 on page 29.
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The statement is written as follows:

DO label loop-var = initial, final, increment
. . .

label statement

It is good programming practice to ensure that the terminal labelled state-
ment is always a CONTINUE statement, and that nested DO loops do not
share terminal statements.

The increment in the DO defaults to 1 if it is omitted; this is most often
the case.

Prior to Fortran 77, DO loop index variables were not permitted to cross
0, and negative increments were forbidden. Fortran 77 removes those re-
strictions.

Before Fortran 77, the behavior of the loop when the initial index value
was larger than the final value was compiler dependent: some generated a
one-trip loop, and others a zero-trip loop. Fortran 77 remedied this ambi-
guity by requiring a zero-trip loop.

In Fortran 77, the loop is executed by first computing an iteration count,
equal to the value of the expression max( int( (final - initial + increment) /
increment), 0). The loop index is set equal to the specified initial value, and
the iteration count is then compared to zero. The loop is terminated if the
count is smaller than one. Otherwise, the loop body is executed, and at the
end, the iteration count is reduced by one, the loop index is bumped by the
specified increment, and control returns to the top of the loop for another
test of the iteration count.

The usual case of

DO 10 K = 1, N
. . .

10 CONTINUE

results in the loop body being executed exactly N times.
It is good programming practice to indent the loop body.

10.7.5 CONTINUE statement

The CONTINUE statement serves as a null statement; its normal use is
for the terminal statement of a DO loop. It is optionally labelled:

label CONTINUE

10.7.6 STOP statement

In the early days of Fortran, the STOP statement actually halted the pro-
gram and the computer. When multiprocessing became common, it served
to terminate execution of just the program.

It takes one of the forms
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STOP
STOP nnnnn
STOP ’quoted string’

In the second form, nnnnn is a 1 to 5 digit integer constant. In the second
and third forms, the constant is usually displayed at the termination of
execution. Regrettably, expressions are forbidden (they would introduce a
syntactical ambiguity because of Fortran’s insignificant blank rules).

Because execution of the END statement in a main program terminates
the program, the STOP statement should normally be used only for termi-
nation of execution in unrecoverable abnormal circumstances.

Many Fortran run-time systems print a message on the screen or job log
when a STOP statement is executed; the message is not shown if no STOP
is executed.

10.7.7 PAUSE statement

The PAUSE statement takes the forms

PAUSE
PAUSE nnnnn
PAUSE ’quoted string’

In the second and third forms, the integer constant or quoted string is dis-
played on the screen or job log, and execution pauses. It must be possible
to resume execution, but the means for doing so are system-dependent.

On older machines, the PAUSE statement served mainly for commu-
nication with the computer operator, such as to mount the next input or
output tape.

In modern programs, the PAUSE statement should be avoided.

10.7.8 RETURN statement

Before Fortran 77, the only way a routine could legally return to its caller
was to execute a

RETURN

statement. Fortran 77 permits the END statement to perform this job, and
modern practice is to severely limit use of RETURN.

One of the rules of top-down programming is that routines should have
a single entry (at the top), and a single exit (at the bottom); RETURN
statements in the middle of a routine violate that convention, and are dis-
couraged.

10.7.9 ENTRY statement

The ENTRY statement is a rarely used Fortran feature that permits a rou-
tine to have multiple names and argument lists. Its use is strongly discour-
aged, and its syntax will not even be shown here.
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10.7.10 END statement

The end of any program unit is signalled by the

END

statement, which must be the last statement in the program unit. Any
statements found after the END statement in the current input file are
assumed to belong to the following program unit.

In Fortran 77, if execution reaches this statement in a function or sub-
routine, control returns to the caller; in a main program, control returns to
the run-time library, and thence to the operating system.

In older Fortrans, the END statement was not executable, and it was
an error to reach it. Modern practice is to use END as the normal way of
returning from a subroutine, function, or main program.

10.8 Input/Output statements

Input/output is one of the richer areas of Fortran, and its complexity gives
novice programmers considerable difficulty. It is also an area where numer-
ous dialectical differences existed prior to Fortran 77. The 1977 Standard
did much to improve the situation, but language extensions, particularly to
the OPEN and CLOSE statements, exist in most compilers.

Fortran input/output is record-oriented. Each I/O operation handles one
or more records. In text files, Fortran records are lines, so that it is impos-
sible in standard Fortran to write partial lines.

Fortran offers support for several kinds of sequential I/O: list-directed
(free form), namelist, formatted, and unformatted (binary).

Internal files in the form of character variables are also supported; in
READ and WRITE statements, the character variable replaces the unit
number. In this form, I/O is restricted to formatted I/O, and of course, nei-
ther an OPEN nor a CLOSE statement is appropriate.

Formatted and unformatted I/O can also be performed on direct-access
files; records in such files can be processed in any order.

With formatted I/O, record delimiters are line delimiters; they may be
special control characters, as on most systems that use the ASCII character
set, or special markers in the file, or just implicit positions in files made up
of fixed-length records. On essentially all systems, such files can be read by
programs written in other languages.

Fortran unformatted (binary) records must contain special codes that
mark the start and end of records, so that files can be read forwards or
backwards. These extra codes mean that Fortran unformatted files contain
additional information beyond what the programmer specified in the I/O
list, and it is therefore impossible in standard Fortran to write binary files
for which the programmer has complete control over the contents. Since
there is a frequent need for such a facility (e.g. to write binary files to be
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sent to a graphics device), programmers must resort to language extensions
to accomplish that, and the resulting code is not portable.

Because of the extra markers, Fortran binary files are usually not easy
to read by programs written in other languages.

Because the data is recorded in its native binary format, Fortran binary
files in general cannot be exchanged between unlike architectures, or per-
haps even between Fortran programs on the same machine, but compiled
with different Fortran compilers.

Binary files are nevertheless very useful, because they offer substan-
tially faster I/O than formatted files. Also, the exact bit patterns of all data
are preserved with binary I/O. Formatted I/O involves a conversion between
binary and decimal, and in general introduces errors.

The model of I/O processing assumed by Fortran 77 is that files must
first be opened for processing, either by an explicit OPEN statement, or im-
plicitly according to local conventions of the compiler, run-time library, and
operating system. Once opened, a file can be read or written using READ
and WRITE statements, and possibly PRINT statements. The position
of a sequential file can be controlled by the BACKSPACE and REWIND
statements. A file can be truncated by an END FILE statement. After
processing, the file is closed, either with an explicit CLOSE statement, or
implicitly when control returns to the run-time library from execution of a
STOP, CALL EXIT, or a main program’s END statement.

Reference to an open file is made not by the name of the file, but more
conveniently by a small integer number, called the unit number. The unit
number is selected in the OPEN statement, and used until the file is closed.
After the close operation, the same unit number can be reused, possibly for
a different file.

The integers available for unit numbers are regrettably system-
dependent, and unfortunately, no standard Fortran library routine exists
to obtain an unused unit number. In general, unit numbers in the range
1–19 can be expected to be available. A few systems allow zero or negative
unit numbers, and a few place no restrictions at all on the unit number.

The number of files that can be open at one time is system dependent.
It may be as few as a half dozen, or as large as several dozen. It is therefore
advisable to close files once they are no longer needed.

Some unit numbers may be pre-assigned to certain I/O devices; the local
Fortran Programmer’s Guide must be consulted for information about such
restrictions.

IBM mainframe Fortran since the 1950s has used the convention that
unit 5 is text input, unit 6 is the printer, and unit 7 is the card punch
(now an obsolete device). Most Fortran vendors follow IBM’s custom. On
Berkeley UNIX and SunOS, unit 0 is preconnected to stderr, unit 5 to stdin,
and unit 6 to stdout; none of these units should ever be opened or closed,
and even REWIND should be avoided, since that may be illegal if the files
are connected to UNIX pipes.

Fortran 77 permits the unit number to be replaced by an asterisk, which
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causes default pre-opened input and output units to be used. While this
form is adequate for small throw-away programs, it is not advisable in soft-
ware that might be moved to other machines, because the file assignments
can be changed only by revising the source code to use numbers instead of
asterisks.

The asterisk form of a unit number can only be used in PRINT, READ,
and WRITE statements; it cannot be used in BACKSPACE, CLOSE, END
FILE, INQUIRE, OPEN, or REWIND statements.

PRINT, READ, and WRITE statements have an optional I/O list, des-
ignated iolist in the following subsections. This is a comma-separated list of
variables (scalars or array names). For output, expressions are permitted.

Portions of arrays may be selected with the implied DO, as illustrated
by these examples:

READ (. . . ) (A(K), K = K1, K2)
READ (. . . ) ((B(K,L), K = K1, K2), L = L1, L2, L3)

The implied loops work just like Fortran DO loops, with the computation
of an iteration count, a loop index variable, and initial, final, and optional
increment values.

Each iolist forms one Fortran record on unformatted files, and one or
more records on formatted files. On most systems, there is no real limit
to the amount of data that can be transmitted with a single Fortran I/O
statement.

10.8.1 Fortran carriage control

Some short remarks about Fortran carriage control are in order. In the
early days of Fortran, output devices were limited to line printers, card
punches, and magnetic tape. Six-bit character sets offered only 64 printable
characters, with no provision for any control characters.

On line printers, it is desirable to be able to control the output spac-
ing, as well as to be able to force the start of a new page. The convention
was therefore adopted that the first character of each record sent to a line
printer is not printed, but instead, is used as a printer carriage control
instruction:

Character Vertical Space Before Printing
blank one line
0 two lines
- three lines
+ no advance (i.e. overprint last-written line)
1 to first line of next page

The minus for triple line spacing was not universally available. Some print-
ers accepted other characters, but usually, anything in column 1 other than



10 FORTRAN STATEMENT SYNTAX 38

those five characters was treated like a blank, and single line spacing re-
sulted.

When printers commanded by ASCII control characters (i.e. most pro-
duced since the late 1970s) became common, these conventions were no
longer of any use, and today, they are inappropriate for most Fortran out-
put. Nevertheless, they persist in a lot of software, and veteran program-
mers have become accustomed to leaving an initial space in each output
line.

There is little reason to be concerned with Fortran carriage control in
most new code, however, with one caveat.

On operating systems like MS-DOS, UNIX, and TOPS-20, files are just
a stream of bytes, with no attached attributes, and column 1 of printer files
has no special significance.

On other operating systems, like DEC’s VAX VMS and IBM’s mainframe
systems, files have additional attributes, like ‘fixed length records’, and
‘Fortran carriage control’. On those systems, Fortran formatted output files
may by default have a Fortran carriage control attribute that gives the first
character of every line special interpretation. On such systems, the simple
act of copying the file to a terminal, or into a text editor buffer, may cause
column 1 to disappear. On VAX VMS, this action can be eliminated by open-
ing the file with the special non-standard carriagecontrol=’list’ attribute
in the OPEN statement.

10.8.2 BACKSPACE statement

The statement

BACKSPACE n

backspaces unit n one Fortran record. If the last READ operation reached
end-of-file, then the BACKSPACE positions the file before the end-of-file,
such that a following WRITE will add a record to the file.

10.8.3 END FILE statement

The statement

END FILE n

writes an end-of-file marker on unit n. Since a REWIND after a WRITE
accomplishes the same thing, the END FILE statement receives little use.

10.8.4 PRINT statement

The PRINT statement is a holdover from the 1950s when Fortran’s I/O
statements were device-dependent (there were also READ INPUT TAPE,
WRITE OUTPUT TAPE, and PUNCH statements).

It takes the forms



10 FORTRAN STATEMENT SYNTAX 39

PRINT format-label, iolist
PRINT *, iolist

In the first of these, formatted output of data in the iolist to the default
print file (on UNIX, stdout) is made according to the referenced FORMAT
statement. In the second form, output is list-directed (free format).

Because the PRINT statement is preconnected to a fixed file, it is not
advisable for general programming use. Small programs that require only
a single output file may find it convenient.

10.8.5 READ statement

The READ statement takes the general forms

READ format-label
READ format-label, iolist
READ (cilist)
READ (cilist) iolist

The first two forms are not often used, because they read only from an
implementation-defined unit.

cilist is a control information list. It is a comma-separated list of values
that supplies the Fortran unit number, and other items that depend on the
I/O method. The first item is always the unit number, which is an integer
expression, usually a constant, or a variable name.

For formatted I/O, the second item is a format specification, which is
either the numeric statement label of a FORMAT statement defined else-
where in the routine, or else is a character expression which evaluates to a
string containing the format, including the outer parentheses.

For list-directed I/O, the second item in the cilist is an asterisk.
For namelist I/O, the second item in the cilist is a namelist name, defined

in a NAMELIST statement in the specification statement section.
The remaining entries in the cilist are keyword = value pairs. Here are

some examples of cilists:
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formatted I/O (unit-number, format-label)
(unit-number, format-label, end=eof-label)
(unit-number, format-string)
(unit-number, format-string, end=eof-label)

unformatted I/O (unit-number)
(unit-number, end=eof-label)

direct-access I/O (unit-number, format-label, rec=recnum)
(unit-number, format-string, rec=recnum)
(unit-number, rec=recnum)
(unit-number, rec=recnum)

list-directed I/O (unit-number, *)
(unit-number, *, end=eof-label)

namelist I/O (unit-number, namelist-name)
(unit-number, namelist-name, end=eof-label)

Here are some sample formatted I/O statements:

READ (5,1000) X,Y
READ (5,’(2F10.3)’) X,Y
READ (5,’(2F10.3)’,end=99) X,Y

1000 FORMAT (2F10.3)

These read two floating-point variables according to the format 2F10.3. The
third will jump to the statement labelled 99 if an end-of-file is reached dur-
ing the read.

Here are two list-directed (free format) input statements:

READ (5,*) X,Y
READ (5,*,end=99) X,Y

The two input values appear in the input stream separated by whitespace
(including line breaks), or a single comma.

Here are some unformatted (binary) input examples:

READ (17) N, (A(K), K = 1,N)
READ (9,end=500) X, Y

Note that in the first statement, the number of elements in the vector is
recorded in the input record, and can be used in the reading of the remain-
der of the record.

Namelist input is straightforward:

NAMELIST /MYDATA/ X, Y, Z
. . .
READ (5,MYDATA,end=99)

No iolist is used, because the namelist input contains the variable names
and values, in any order.

Direct-access I/O is available in both formatted and unformatted vari-
ants:
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READ (17,’(2F10.3)’,rec=23) X,Y
READ (17,rec=23) X,Y

Each of these selects record number 23. That record must have previously
been written by a corresponding direct-access WRITE statement. It is not
necessary in a direct-access file to write all records (i.e. holes may exist),
but you can legally read only those that have been written.

Since Fortran records are identifiable in files, it is permissible for a
READ statement to have a shorter iolist than the one in the WRITE state-
ment that wrote the file. This is sometimes useful; here is a short code
fragment that positions to the end of an unformatted file, ready to write
more data:

10 READ (1,end=20)
GO TO 10

20 CONTINUE
. . .
WRITE (1) iolist

Reading unwanted records this way is faster than if iolists were used, and
also does not require knowledge of what the iolists were. This can be impor-
tant, because the structure of Fortran files is determined by the iolists used
to write them, and that is entirely the responsibility of the programmer.

Fortran records no information whatever in the file about the data types
or array lengths from the I/O list. For formatted, list-directed, and namelist
output, only newlines are added; for unformatted I/O, Fortran only inserts
special markers that delineate the start and end of each record. Otherwise,
the data in the file is nothing but a raw stream of bits. This makes Fortran
files very flexible, but also easily subject to programming errors if the iolists
on WRITE and corresponding READ statements mismatch.

10.8.6 REWIND statement

By default, all Fortran files are normally opened so that the next READ
statement will read the first record. In order to write a sequential file, then
read it back without having to close and reopen it, you can issue a REWIND
statement:

REWIND unit-number

For example, the three statements

WRITE (1) A,B,C
REWIND 1
READ (1) X,Y,Z

are effectively the same as the following three assignments, only consider-
ably slower:
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X = A
Y = B
Z = C

10.8.7 WRITE statement

Fortran records are written with the WRITE statement, which is analogous
to the READ statement, except that the end=nnn item is of no use:

WRITE (cilist)
WRITE (cilist) iolist

A single formatted WRITE statement produces one or more output
records (i.e. lines); a new record is started for every slash format item, and
every time the end of the format specification is reached when more data
remains to be written.

A single list-directed or namelist WRITE statement produces one or
more output lines.

A single direct-access WRITE statement produces one record in the di-
rect access file. It is an error if the length of the iolist is longer than the
record length declared in the recl=nnn entry in the OPEN statement.

For sequential files, there should be no limit on the amount of data that
can be read or written with one I/O statement.

10.8.8 FORMAT statement

Format specifications often present great difficulty for novice programmers.
The reason is that the contents of the format specification conform to a
little programming language, albeit a special-purpose one, whose syntax is
somewhat irregular.

The general idea is that each item in the iolist is matched one-for-one
with format specifiers, and formatted accordingly. If there are more items
in the iolist than specifiers in the format, then the format is re-used by
returning to the beginning of the specification terminated by the last close
parenthesis. If there is no last closing parenthesis, control returns to the
beginning of the format specification. In either case, a new record is started
in the file.

Repeatable edit descriptors are summarized in the following table:



10 FORTRAN STATEMENT SYNTAX 43

Iw integer value right-adjusted in field of width w
Iw.m integer value right-adjusted in field of width w, with at least

m digits (leading zeroes are supplied if necessary)
Fw.d REAL value right-adjusted in field of width w, with d frac-

tional digits
Ew.d REAL value right-adjusted in field of width w, with d frac-

tional digits, and a two-digit power-of-ten exponent field
Ew.dEe REAL value right-adjusted in field of width w, with d frac-

tional digits, and a power-of-ten exponent field of width e
Dw.d DOUBLE PRECISION value right-adjusted in field of

width w, with d fractional digits, and a two-digit power-of-
ten exponent field

Dw.dEe DOUBLE PRECISION value right-adjusted in field of
width w, with d fractional digits, and a power-of-ten expo-
nent field of width e

Gw.d DOUBLE PRECISION value right-adjusted in field of
width w, with d fractional digits, and an optional two-digit
power-of-ten exponent field, which is used only if necessary

Gw.dEe DOUBLE PRECISION value right-adjusted in field of
width w, with d fractional digits, and an optional power-of-
ten exponent field of width e, which is used only if necessary

Lw LOGICAL value output right-adjusted in a field of width w,
as a letter T or F

A CHARACTER value output in a field of the width of the
corresponding iolist expression

Aw CHARACTER value output right-justified in a field of
width w

Any of these may be prefixed with an integer repeat count (e.g. 2E15.7 is
equivalent to E15.7, E15.7).

Non-repeatable edit descriptors are as follows:
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’cc. . . cc’ character string constant
nHhh. . . hh Hollerith string constant
Tc tab to absolute column c for next item
TLc tab left c columns before next item
TRc tab right c columns before next item
nX skip n spaces before next item
/ start a new record
: terminate format processing if there are no

more iolist items
S revert to default sign processing
SP force plus signs on numeric items
SS suppress plus signs on numeric items
kP scale next floating-point items by 10k

BN ignore blanks in fields
BZ treat all blanks as zeroes

When multiple edit descriptors are present, they should be separated by
commas; the slash format item does not need delimiting commas.

There are a lot of details that need to be considered, and a textbook
treatment is essential.

For the beginner, the Iw, Fw.d, Ew.d, Aw, Lw, ’ccc. . . ccc’, nX, and / format
items provide a useful subset that can be used effectively. A single example
may serve to illustrate them:

WRITE (6,1000) N, X, Y, ’hello’, (X .EQ. Y)
1000 FORMAT (1X, I5, F10.2, E15.5, 1X, A, 1X, L3 / ’ That was easy.’)

It might produce output like this ( marks spaces visibly):

   255      3.14   0.27182E+01 hello   F
 That was easy.

10.8.9 OPEN statement

Files can be opened by name or unit number using the OPEN statement.
There are numerous standard options of the form key = value, and most
implementations provide additional ones to cater to the needs of the local
file system.

We shall show only the simplest cases here.
Many Fortran run-time libraries provide a default association between

unit numbers and file names, in which case only a unit number is needed.

OPEN (unit=1)

For example, on SunOS, this will open a sequential formatted file named
fort.1 ; on Stardent UNIX and VAX VMS, this creates a file named
FOR001.DAT.

Relying on fixed file names is inflexible and unsafe; more commonly, a
file name is available, possibly constructed in the program itself:
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OPEN (unit=1, file=’myfile.dat’)

This would open the file myfile.dat .
These simple cases do not provide the Fortran library with all the infor-

mation that might be necessary, so defaults are assumed. However, some
libraries will issue warning messages when this happens. A recommended
method is to specify the access method and the file status:

OPEN (unit=1,
X file=’myfile.dat’,
X access=’sequential’,
X form=’formatted’,
X status=’unknown’)

If the file is intended for immediate input, change ’unknown’ to ’old’, so that
the program will be terminated if the file does not exist.

10.8.10 CLOSE statement

The

CLOSE (unit=unit-number)

statement closes the file currently associated with the specified unit num-
ber, and frees whatever internal resources (e.g. buffer memory) that may
have been required while the file was open. The unit number is then avail-
able for re-use for processing of any other file.

10.8.11 INQUIRE statement

The INQUIRE statement provides a means of finding out whether a file is
open, and if so, what attributes were requested at open time.

INQUIRE (unit=unit-number, . . . )

Like the OPEN statement, it has a great many keyword = value options,
only a few of which are commonly needed.

To find out the name of an open file, do

INQUIRE (unit=unit-number, name=namvar)

The name will be returned in the character variable named namvar.
To find out whether a file is open on a particular unit, do

INQUIRE (unit=unit-number, opened=logvar)

The logical variable logvar will be set .TRUE. on return if the file is open,
and .FALSE. otherwise.

This last form can be used to good effect in a function to find an unused
unit number:
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INTEGER FUNCTION getun ()
LOGICAL isopen
getun = 1

10 INQUIRE (unit=getun, opened=isopen)
IF (isopen) THEN

getun = getun + 1
ELSE

RETURN
END IF
IF (getun .LE. 50) GOTO 10
getun = -1
END

This will try units 1, 2, . . . , 50 in turn, returning as a function value the
first unused unit number it finds. If after 50 tries, no available unit number
can be found, something is probably wrong, and a negative unit number is
returned.

Although unit number 0 is available on some Fortran implementations,
not all support it, so we start the search with unit number 1.

The maximum number of simultaneously open units varies from system
to system, but is often in the range 5 to 20. It is therefore reasonable to
terminate the loop after a few dozen tries.
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PARAMETER, 3, 11, 12, 16,

22
PAUSE, 34
PRINT, 36–39
PROGRAM, 12, 13
PUNCH, 38
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READ INPUT TAPE, 38
READ, 26, 35–39, 41, 42
REAL FUNCTION, 11
REAL, 5, 9–11, 15, 16, 20, 21
RETURN, 14, 15, 34
REWIND, 36–38, 41
SAVE, 18, 24, 25
STOP, 13, 33, 34, 36
SUBROUTINE, 12, 14, 15

arguments of, 14
WRITE OUTPUT TAPE, 38
WRITE, 35–38, 41, 42
arithmetic IF, 31
assigned GOTO, 30, 31
assignment, 28
blank, 13
block IF, 32
checking for long lines, 12
comment, 11, 13
comment between continuation

lines, 13
computed GOTO, 30
continuation of, 11
control, 29
function, 26
I/O, 35
ignored columns, 12
layout, 11
logical IF, 31
maximum length of, 11
null, 33
order, 12
punched card influence, 11, 12
specification, 16
text columns of, 11
type declaration, 16

statement label, 4
stderr, 36
stdin, 36
stdout, 36, 39
STOP, 13, 33, 34, 36
storage addressing, 6
structured Fortran, 29–31
SUBROUTINE, 12, 14, 15

arguments of, 14
declaration of, 14

invocation of, 14
omitted RETURN, 15

subroutine, 13
Sun SPARC, 9
SunOS, 22, 36, 44
symbolic constant, 22

TOPS-20, 38
two’s complement, 6
type declaration, 16

order of, 16
reasons for explicit, 21

undeclared variable
default type of, 21

underflow, 8
unit number, 36, 45

asterisk in place of, 36
finding unused one, 45
preassigned, 36
standard values, 36
values of, 36

UNIX, 38, 39
until loop, 30

variable
bugs from uninitialized, 27
catching undeclared, 22
default type of undeclared, 21
detecting uninitialized, 27
global, 19
lifetime of, 24
mis-spelt name, 21
name of, 3
value on routine re-entry, 24

VAX VMS, 22, 38, 44

while loop, 30
word

definition of, 6
size of, 6

WRITE, 35–38, 41, 42
WRITE OUTPUT TAPE, 38

zero
sign of, 6


