
Keynote Address: The design of TEX and METAFONT: A retrospective

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

This article looks back at the design of TEX and METAFONT, and analyzes how they
were affected by architectures, operating systems, programming languages, and
resource limits of the computing world at the time of their creation by a remark-
able programmer and human being, Donald E. Knuth. This paper is dedicated
to him, with deep gratitude for the continued inspiration and learning that I’ve
received from his software, his writing, and our occasional personal encounters
over the last 25+ years.

1 Contents

1 Contents 1001

2 Introduction 1001

3 Computers and people 1002

4 The DEC PDP-10 1002

5 Resource limits 1004

6 Choosing a programming language 1005

7 Switching programming languages 1006

8 Switching languages, again 1008

9 Wrapping up 1009

2 Introduction

More than a quarter century has elapsed since Don-
ald Knuth took his sabbatical year of 1977–78 at
Stanford University to tackle the problem of improv-
ing the quality of computer-based typesetting of his
famous book series, The Art of Computer Program-
ming [26, 27, 28, 29, 30, 31].

When the first volume appeared in 1968, most
typesetting was still done by the hot lead process,
and expert human typographers with decades of ex-
perience handled line breaking, page breaking, and
page layout. By the mid 1970s, proprietary compu-

ter-based analog typesetters had entered the market,
and in the view of Donald Knuth, had seriously de-
graded quality. When the first page proofs of part of
the second edition of Volume 2 arrived, he was so
disappointed that he wrote [35, p. 5]:

I didn’t know what to do. I had spent 15 years
writing those books, but if they were going to
look awful I didn’t want to write any more.
How could I be proud of such a product?

A few months later, he learned of some new devices
that used digital techniques to create letter images,
and the close connection to the 0’s and 1’s of com-
puter science led him to think about how he himself
might design systems to place characters on a page,
and draw the individual characters as a matrix of
black and white dots. The sabbatical-year project
produced working prototypes of two software pro-
grams for that purpose that were described in the
book TEX and METAFONT: New Directions in Typeset-
ting [32].

The rest is of course history .. . the digital type-
setting project lasted about a decade, produced sev-
eral more books [36, 37, 38, 39, 40, 34, 35], Ph.D.
degrees for Frank Liang [44], John Hobby [16],
Michael Plass [48], Lynn Ruggles [49], and Ignacio
Zaballa Salelles [57], and had spinoffs in the com-
mercial document-formatting industry and in the
first laser printers. TEX, and the LATEX system built
on top of it [9, 10, 11, 42, 43, 45], became the stan-
dard markup and typesetting system in the computer

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1001

http://www.math.utah.edu/~beebe

Nelson H. F. Beebe

science, mathematics, and physics communities, and
has been widely used in many other fields.

The purpose of this article is to look back at TEX
and METAFONT and examine how they were shaped
by the attitudes and computing environment of the
time.

3 Computers and people

Now that computers are widely available through-
out much of the developed world, and when embed-
ded systems are counted, are more numerous than
humans, it is probably difficult for younger people to
imagine a world without computers readily at hand.
Yet not so long ago, this was not the case.

Until the desktop computers of the 1980s, a
‘computer’ usually meant a large expensive box, at
least as long as an automobile, residing in a climate-
controlled machine room with raised flooring, and
fed electricity by power cables as thick as your wrist.
At many universities, these systems had their own
buildings, or at least entire building floors, called
Computer Centers. The hardware usually cost hun-
dreds of thousands to millions of dollars (where ac-
cording to the US Consumer Price Index, a million
dollars in 1968 is roughly the same as five million in
2000), and required a full-time professional staff of
managers, systems programmers, and operators.

At most computer installations, the costs were
passed on to users in the form of charges, such as
the US$1500 per hour for CPU time and US$0.50 to
open a file that I suffered with as a graduate student
earning US$1.50 per hour. At my site, there weren’t
any disk storage charges, because it was forbidden
to store files on disk: they had to reside either on
punched cards, or magnetic tape. A couple of years
ago, I came across a bill from the early 1980s for a
200MB disk: the device was the size of a washing
machine, and cost US$15,000. Today, that amount
of storage is about fifty thousand times cheaper.

I have cited these costs to show that, until desk-
top computers became widespread, it was people
who worked for computers, not the reverse. When
a two-hour run cost as much as your year’s salary,
you had to spend a lot of time thinking about your
programs, instead of just running them to see if they
worked.

When I came to Utah in 1978, the College of Sci-
ence that I joined had just purchased a DECSYSTEM

20, a medium-sized timesharing computer based on
the DEC PDP-10 processor, and the Department of
Computer Science bought one too on the same or-
der. Ours ultimately cost about $750,000, and sup-
plied many of the computing needs of the College
of Science for more than a dozen years, often sup-

porting 50–100 interactive login sessions. Its total
physical memory was just over three megabytes, but
we called it three quarters of a megaword. Although
computer time was still a chargeable item, we man-
aged to recover costs by getting each Department
to contribute a yearly portion of the expenses as a
flat fee, so most individual users didn’t worry about
computer charges.

4 The DEC PDP-10

The PDP-10 ran at least eight or nine different op-
erating systems:
• BBN TENEX,
• Compuserve 4S72,
• DEC TOPS-10 (sometimes jokingly called

BOTTOMS-10 by TOPS-20 users),
• DEC TOPS-20 (a modified TENEX affection-

ately called TWENEX by some users),
• MIT ITS (Incompatible Time Sharing System),
• Stanford WAITS (Westcoast Alternative to

ITS),
• Tymshare AUGUST, a modified TOPS-10, and
• Tymshare TYMCOM-X, and on the smaller

DECSYSTEM 20/20 model, TYMCOM-XX.
Although the operating systems differed, it was usu-
ally possible to move source-code programs among
them with few if any changes, and some binaries
compiled on TOPS-10 in 1975 still run just fine on
TOPS-20 today.

Our machines at Utah both used TOPS-20, but
Donald Knuth’s work on TEX and METAFONT was
done on WAITS. That system was a research op-
erating system, with frequent changes that resulted
in bugs, causing many crashes and much downtime.
Don told me earlier this year that the O/S was aptly
named, since he wrote much of the draft of the
TEXbook while he was waiting in the Computer Cen-
ter for WAITS to come back up.

For about a decade, PDP-10 computers formed
the backbone of the Arpanet, which began with
just five nodes, at the University of California cam-
puses at Berkeley, Los Angeles, and Santa Barbara,
plus SRI (Stanford Research Institute) and Utah,
and later evolved into the world-wide Internet [13,
p. 48]. PDP-10 machines were adopted by major
computer science departments, and hosted or con-
tributed to many important developments, including
at least these:
• Bob Metcalf’s Ethernet [Xerox PARC, Intel, and

DEC];
• Vinton Cerf’s and Robert Kahn’s development of

the Transmission Control Protocol and the Inter-
net Protocol (TCP/IP);

1002 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

Keynote Address: The design of TEX and METAFONT: A retrospective

• the MACSYMA [MIT], REDUCE [Utah] and
MAPLE [Waterloo] symbolic-algebra languages;

• several dialects of LISP, including MACLISP

[MIT] and PSL (Portable Standard Lisp)
[Utah];
• the systems-programming language BLISS

[DEC and Carnegie-Mellon University (CMU)];
• the shell-scripting language PCL (Program-

mable Command Language) [DEC and CMU];
• the SAIL (Stanford Artificial Intelligence Lan-

guage) Algol-family programming language in
which TEX and METAFONT were first imple-
mented;
• an excellent compiler for PASCAL [Hamburg/

Rutgers/Sandia], the language in which TEX
and METAFONT were next implemented;
• Brian Reid’s document-formatting and biblio-

graphic system, SCRIBE [CMU], that heavily in-
fluenced the design of LATEX and BIBTEX;
• Richard Stallman’s extensible and customizable

text editor, EMACS [MIT];
• Jay Lepreau’s port, PCC20 [Utah], of Steve

Johnson’s Portable C Compiler, PCC [Bell Labs];
• Kok Chen’s and Ken Harrenstien’s KCC20 native

C compiler [SRI];
• Ralph Gorin’s SPELL, one of the first sophisti-

cated interactive spelling checkers [Stanford];
• Mark Crispin’s mail client, MM, still one of the

best around [Stanford];
• Frank da Cruz’s transport- and platform-inde-

pendent interactive and scriptable communica-
tions software KERMIT [Columbia].

The PDP-10 and its operating systems is men-
tioned in about 170 of the now nearly 4000 Request
for Comments (RFC) documents that informally de-
fine the protocols and behavior of the Internet.

The PDP-10 had compilers for ALGOL 60, BA-
SIC, BLISS, C, COBOL 74, FORTH, FORTRAN 66, FOR-
TRAN 77, LISP, PASCAL, SAIL, and SNOBOL, plus
three assemblers called MACRO, MIDAS, and FAIL
(fast one-pass assembler). A lot of programming
was done in assembly code, including most of the
operating systems. Indeed, the abstract of the FAIL
manual [56] notes:

Although FAIL uses substantially more main
memory than MACRO-10, it assembles typ-
ical programs about five times faster. FAIL
assembles the entire Stanford time-sharing
operating system (two million characters) in
less than four minutes of CPU time on a KA-
10 processor.

The KA-10 was one of the early PDP-10 models, so
such performance was quite impressive. The high-
level BLISS language might have been preferred for
such work, but it was comparatively expensive to li-
cense, and few sites had it. Anyway, Ralph Gorin’s
book on assembly language and systems program-
ming [12] provided an outstanding resource for pro-
grammers.

Document formatting was provided by RUNOFF
which shared a common ancestor ROFF with UNIX

TROFF. Later, SCRIBE became available, but required
an annual license fee, and ran only on the PDP-10,
so it too had limited availability, and I refused to use
it for that reason.

The PDP-10 had 36-bit words, with five seven-
bit ASCII characters stored in each word. This left
one bit, the low-order one, left over. It was normally
zero, but when set to one, indicated that the preced-
ing five characters were a line number that some edi-
tors used, and compilers could report in diagnostics.

Although seven-bit ASCII was the usual PDP-
10 text representation, the hardware instruction set
had general byte pointer instructions that could ref-
erence bytes of any size from 1 to 36 bits, and the
KCC20 compiler provided easy access to them in C.
For interfacing with 32-bit UNIX and VMS systems,
8-bit bytes were used, with four bits wasted at the
low end of each word.

The PDP-10 filesystems recorded the byte count
and byte size for every file, so in principle, text-
processing software at least could have handled both
7-bit and 8-bit byte sizes. Indeed, Mark Crispin pro-
posed that Unicode could be nicely handled in 9-bit
UTF-9 and 18-bit UTF-18 encodings [6]. Alas, most
PDP-10 systems were retired before this generality
could be widely implemented.

One convenient feature of the PDP-10 operat-
ing systems was the ability to define directory search
paths as values of logical names. For example, in
TOPS-20, the command

@define TEXINPUTS: TEXINPUTS:,
ps:<jones.tex.inputs>

would add a user’s personal subdirectory to the end
of the system-wide definition of the search path. A
subsequent reference to texinputs:myfile.tex was
all that it took to locate the file in the search path.

Since the directory search was handled inside
the operating system, it was trivially available to all
programs, no matter what language they were writ-
ten in, unlike other operating systems where such
searching has to be implemented by each program
that requires it.

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1003

Nelson H. F. Beebe

In addition, a manager could readily change the
system-wide definition by a single privileged com-
mand:

$^Edefine TEXINPUTS: ps:<tex.inputs>,
ps:<tex.new>

The new definition was immediately available to all
users, including those who had included the name
TEXINPUTS: in their own search paths.

The great convenience of this facility encour-
aged those who ported TEX and METAFONT to pro-
vide something similar. Today, users of the TEXLive
distributions are familiar with the kpathsea library,
which provides an even more powerful mechanism
for path searching.

The original PDP-10 instruction set had an 18-
bit address field, giving a memory space of 218 =
262 144 words, or about 1.25MB. Later designs ex-
tended the address space to 30 bits (5GB), but only
23 were ever implemented in DEC hardware, giving
a practical limit of 40MB. That was still much more
than most customers could afford in 1984 when the
PDP-10 product line was terminated, and VAX VMS
became the DEC flagship architecture and operating
system.

DEC had products based on the KA-10, KI-10,
and KL-10 versions of the PDP-10 processor. Later,
other companies produced competing systems that
ran one or more of the existing operating systems:
Foonly (F1, F2, and F3), Systems Concepts (SC-
40), Xerox PARC (MAXC) [8], and XKL Systems
Corporation (TD-1, TOED-1, and TOAD-1). Some
of these implemented up to 27 address bits (128MW,
or 576MB). XKL even made a major porting effort of
GNU and UNIX utilities, and got the X11 WINDOW
SYSTEM running. Ultimately, none enjoyed contin-
ued commercial success.

The PDP-10 lives on among hobbyists, thanks
to Ken Harrenstien’s superb KLH10 simulator [15]
with full 30-bit addressing, and the vendor’s gen-
erosity in providing the operating system, compil-
ers, and utilities for noncommercial use. On a fast
modern desktop workstation, TOPS-20 runs several
times faster than the original hardware ever did. It
has been fun revisiting this environment that was
such a leap forward from its predecessors, and I now
generally have a TOPS-20 window or two open on
my UNIX workstation.

5 Resource limits

The limited memory of the PDP-10 forced many
economizations in the design of TEX and META-
FONT. Although PASCAL has new() and dispose()
functions for allocating and freeing memory, imple-

Table 1: TEX table sizes on TOPS-20 in 1984 and
in TEXLive on UNIX in 2004, as reported in the
trip test.

Table 1984 2004 Growth
strings 1819 98002 53.9
string characters 9287 1221682 131.5
memory words 3001 1500022 499.8
control sequences 2100 60000 28.6
font info words 20000 1000000 50.0
fonts 75 2000 26.7
hyphen. exceptions 307 1000 3.3
stack positions (i) 200 5000 25.0
stack positions (n) 40 500 12.5
stack positions (p) 60 6000 100.0
stack positions (b) 500b 200000 400.0
stack positions (s) 600 40000 66.7

mentations were allowed to ignore the latter, so Don
could not use them. Instead, all memory manage-
ment is handled by the programs themselves, and
sizes of internal tables are fixed at compile time.
Table 1 shows the sizes of those tables, then and
now. To further economize, many data structures
were stored compactly with redundant information
elided. Thus, for example, while TEX fonts could
have up to 256 characters, there are only 16 differ-
ent widths and heights allowed, and one of those 16
is required to be zero. Also, although hundreds of
text fonts are allowed, only 16 mathematical fonts
are supported.

Instead of supporting scores of accented char-
acters, TEX expected to compose them dynamically
from an accent positioned on a base letter. That in
turn meant that words with accented letters could
not be hyphenated automatically, an intolerable sit-
uation for many European languages. That restric-
tion was finally removed in 1990 with the release of
TEX version 3.0 and METAFONT version 2.0, when
those programs were extended to fully support 8-bit
characters.

The TEX DVI and METAFONT GF and TFM files
were designed to be compact binary files that re-
quire special software tools to process. In contrast,
in UNIX TROFF, these files are generally simple, al-
beit compact and cryptic, text files to facilitate use of
filters in data-processing pipelines. Indeed, the UNIX

approach of small-is-beautiful encouraged the use of
separate tools for typesetting mathematics, pictures,
and tables, instead of the monolithic approach that
TEX uses.

1004 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

Keynote Address: The design of TEX and METAFONT: A retrospective

Finally, error diagnostics and error recovery re-
flect past technology and resource limits. Robin Fair-
bairns remarked in a May 2005 TEXhax list posting:

Any TEX-based errors are pretty ghastly. This
is characteristic of the age in which it was
developed, and of the fiendishly feeble ma-
chines we had to play with back then. But
they’re a lot better than the first Algol 68 com-
piler I played with, which had a single syntax
diagnostic “not a program!.”

6 Choosing a programming language

When Donald Knuth began to think about the prob-
lem of designing and implementing a typesetting
system and a companion font-creation system, he
was faced with the need to select a programming
language for the task. We have already summarized
what was available on the PDP-10.

COBOL was too horrid to contemplate: imag-
ine writing code in a language with hundreds of re-
served words, and such verbose syntax that a simple
arithmetic operation and assignment c = a*b be-
comes

MULTIPLY A BY B GIVING C.

More complex expressions require every subexpres-
sion to be given a name and assigned to.

FORTRAN 66 was the only language with any
hope of portability to many other systems. How-
ever, its lack of recursion, absence of data structures
beyond arrays, lack of memory management, defi-
cient control structures, record-oriented I/O, primi-
tive Hollerith strings (12HHELLO, WORLD) that could
be used only in DATA statements and as routine ar-
guments, and its restriction to six-character variable
names, made it distinctly unsuitable. Even so, it was
later used elsewhere to implement a translation of
METAFONT from SAIL for use on Harris computers
[46].

PASCAL only became available on the PDP-10 in
mid-1982, more than five years after Don began his
sabbatical year. We shall return to it in Section 7.

BLISS was an expensive commercial product
that was available only on DEC PDP-10, PDP-11,
and later, VAX, computers. Although DEC later de-
fined COMMON BLISS to be used across those very
different 16-bit, 32-bit, and 36-bit systems, in prac-
tice, BLISS exposed too much of the underlying ar-
chitecture.

LISP would have been attractive and powerful,
and in retrospect, would have made TEX and META-
FONT far more extensible than they are, because
any part of them could have been rewritten in LISP,
and they would not have needed to have macro lan-

guages at all! Unfortunately, until the advent of
COMMON LISP in 1984 [51, 52], and for some time
after, the LISP world suffered from having about
as many dialects as there were LISP programmers,
making it impossible to select a language flavor that
worked everywhere.

The only viable approach would have been to
write a LISP compiler or interpreter, bringing one
back to the original problem of picking a language
to write that in. The one point in favor of this ap-
proach is that LISP is syntactically the simplest of all
programming languages, so workable interpreters
could be done in a few hundred lines, instead of the
10K to 100K lines that were needed for languages
like PASCAL and FORTRAN. However, we have to re-
member that computer use cost a lot of money, and
comparatively few people outside computer science
departments had the luxury of ignoring the substan-
tial run-time costs of interpreted languages. A type-
setting system is expected to receive a lot of use, and
efficiency and fast turnaround are essential.

PDP-10 assembly language had been used for
many other programming projects, including the
operating system and the three assemblers them-
selves. However, Don had worked on several differ-
ent machines since 1959, and he knew that all com-
puters eventually get replaced, often by new ones
with radically-different instruction sets, operating
systems, and programming languages. Thus, this
avenue was not attractive either, since he had to be
able to use his typesetting program for all of his fu-
ture writing.

There was only one viable choice left, and that
was SAIL. Although it had an offspring, MAINSAIL
(Machine Independent SAIL), that might have been
more attractive, that language was not born until
1979, two years after the sabbatical-year project.
Figure 1 shows a small sample of SAIL, taken from
the METAFONT source file mfntrp.sai. A detailed
description of the language can be found in the first
good book on computer graphics [47, Appendix IV].

The underscore operator in source-code assign-
ments printed as a left arrow in the Stanford variant
of ASCII (MIT also had its own flavor), but PDP-
10 sites elsewhere just saw it as a plain underscore.
However, its use as the assignment operator meant
that it could not be used as an extended letter to
make compound names more readable, as is now
common in many other programming languages.

The left arrow in the Stanford variant of ASCII
was not the only unusual character. Table 2 shows
graphics assigned to the normally glyphless control
characters. The existence of seven Greek letters in
the control-character region may explain why TEX’s

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1005

Nelson H. F. Beebe

internal saf string array fname[0:2]
file name, extension, and directory;

internal simp procedure scanfilename
sets up fname[0:2];
begin integer j,c;
fname[0]_fname[1]_fname[2]_null;
j_0;
while curbuf and chartype[curbuf]=space

do c_lop(curbuf);
loop begin c_chartype[curbuf];

case c of begin
[pnt] j_1;
[lbrack] j_2;
[comma][wxy][rbrack][digit][letter];
else done
end;

fname[j]_fname[j]&lop(curbuf);
end;

end;

Figure 1: Filename scanning in SAIL, formatted
as originally written by DEK, except for the
movement of comments to separate lines. The
square-bracketed names are symbolic integer
constants declared earlier in the program.

default text-font layout packs Greek letters into the
first ten slots.

Besides being a high-level language with good
control and data structures, and recursion, SAIL had
the advantage of having a good debugger. Symbolic
debuggers are common today, sometimes even with
fancy GUI front ends that some users like. In 1977,
window systems had not yet made it out of Xerox
PARC, and the few interactive debuggers available
generally worked at the level of assembly language.
Figure 2 shows a small example of a session with the
low-level Dynamic Debugging Tool/Technique, DDT,
that otherwise would have been necessary for de-
bugging most programming languages other than
SAIL (COBOL and FORTRAN, and later, PASCAL, also
had source-level debuggers).

SAIL had a useful conditional compilation fea-
ture, allowing Don to write

changed to ^P^Q when debugging METAFONT;
define DEBUGONLY = ^Pcomment^Q
...
used when an array is believed to require
no bounds checks;
define saf = ^Psafe^Q

Table 2: The Stanford extended ASCII character
set. Character numbers are given in octal.

000 · 001 ↓ 002 α 003 β
004 ∧ 005 ¬ 006 ε 007 π
010 λ 011 γ 012 δ 013

∫

014 ± 015 ⊕ 016 ∞ 017 ∇
020 ⊂ 021 ⊃ 022 ∩ 023 ∪
024 ∀ 025 ∃ 026 ⊗ 027 ↔
030 _ 031 → 032 ~ 033 6=
034 ≤ 035 ≥ 036 ≡ 037 ∨

040–135 as in standard ASCII
136 ↑ 137 ←

140–174 as in standard ASCII
175 ˚ 176 } 177 ^

used when SAIL can save time implementing
this procedure;
define simp = ^Psimple^Q

when debugging, belief turns to disbelief;
DEBUGONLY redefine saf = ^P^Q

and simplicity dies too;
DEBUGONLY redefine simp = ^P^Q

A scan of the SAIL source code for METAFONT

shows several other instances of how the imple-
mentation language and host computer affected the
METAFONT code:
• 19 buffers for disk files;
• no more than 150 characters/line;
• initialization handled by a separate program

module to save memory;
• bias of 4 added to case statement index to avoid

illegal negative cases;
• character raster allocated dynamically to avoid

128K-word limit on core image;
• magic TENEX-dependent code to allocate buf-

fers between the METAFONT code and the SAIL
disk buffers because there is all this nifty core
sitting up in the high seg .. . that is just begging
to be used.

7 Switching programming languages

Donald Knuth initially expected that TEX and META-
FONT would be useful primarily for his own books
and papers, but other people were soon clamoring
for access, and many of them did not have a PDP-
10 computer to run them on. The American Mathe-
matical Society was interested in evaluating TEX and
METAFONT for its own extensive mathematical pub-
lishing activities, but could make an investment in

1006 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

Keynote Address: The design of TEX and METAFONT: A retrospective

@type hello.pas
program hello(output);
begin

writeln(’Hello, world’)
end.

@load hello
PASCAL: HELLO
LINK: Loading

@ddt
DDT
hello$b hello+62$b $$g
$1B>>HELLO/ TDZA 0 $x

0/ 0 0/ 0
<SKIP>
HELLO+2/ MOVEM %CCLSW $x

0/ 0 %CCLSW/ 0
HELLO+3/ MOVE %CCLDN $x

0/ 0 %CCLDN/ 0
HELLO+4/ JUMPN HELLO+11 $x

0/ 0 HELLO+11
HELLO+5/ MOVEM 1,%RNNAM $p

OUTPUT : tty:
$2B>>HELLO+62/ JRST .MAIN. $$x
Hello, world

Figure 2: Debugging a PASCAL program with DDT.
The at signs are the default TOPS-20 command
prompt. The dollar signs are the echo of ASCII
ESCAPE characters. Breakpoints ($b) are set at
the start of the program, and just before the call
to the runtime-library file initialization. Execution
starts with $$g, proceeds after a breakpoint with
$p, steps single instructions with $x, and steps
until the next breakpoint with $$x.

switching from the proprietary commercial typeset-
ting system that it was then using only if it could
be satisfied with the quality, the longevity, and the
portability of these new programs.

It was clear that keeping TEX and METAFONT

tied to SAIL and the PDP-10 would ultimately doom
them to oblivion. It was also evident that some of
the program-design decisions, and the early versions
of the Computer Modern fonts, did not produce the
high quality that their author demanded of himself.
Researchers at Xerox PARC has translated the SAIL
version of TEX to MESA, but that language ran only
on Xerox workstations, which, while full of great

ideas, were too expensive ever to make any signif-
icant market penetration.

A new implementation language was needed,
and in December 1981, when the first source files for
the new systems appeared, there was really only one
possibility: PASCAL. However, before you rise to this
provocation, why not C instead?

UNIX had reached the 16-bit DEC PDP-11 com-
puters at the University of California at Berkeley in
1974. By 1977, researchers there had it running
on the new 32-bit DEC VAX, but the C language
in which much of UNIX is written was only rarely
available outside that environment. Jay Lepreau’s
PCC20 work was going on in the Computer Science
Department at Utah in 1981–82, but it wasn’t until
about 1983 that TOPS-20 users elsewhere began to
get access to it. Our filesystem archives show my first
major porting attempt of a C-language UNIX utility
to TOPS-20 on 11 February 1983.

PASCAL, a descendant of ALGOL 60 [3], was de-
signed by Niklaus Wirth at ETH in Zürich, Switzer-
land in 1968. His first attempt at writing a compiler
for it in FORTRAN failed, but he then wrote a com-
piler for a subset of PASCAL in that subset, translated
it by hand to assembly language, and was finally able
to bootstrap the compiler by getting it to compile
itself [54].

Urs Ammann later wrote a completely new com-
piler [1] in PASCAL for the PASCAL language on the
60-bit CDC 6600 at ETH, a machine class that
I myself worked extensively and productively on for
nearly four years. That compiler generated ma-
chine code directly, instead of producing assembly
code, and ran faster, and produced faster code, than
Wirth’s original bootstrap compiler. Ammann’s com-
piler was the parent of several others, including the
one on the PDP-10.

PASCAL is a small language intended for teach-
ing introductory computer programming skills, and
Wirth’s book with the great title Algorithms + Data
Structures = Programs [55] is a classic that is still
worthy of being studied. However, PASCAL is not a
language that is suitable for larger projects. A frag-
ment of the language is shown in Figure 3, and much
more can be seen in the source code for TEX [37] and
METAFONT [39].

PASCAL’s flaws are well chronicled in a famous
article by Brian Kernighan [17, 18]. That paper was
written to record that pain that PASCAL caused in
implementing a moderate-sized, but influential, pro-
gramming project [19]. He wrote in his article:

PASCAL, at least in its standard form, is just
plain not suitable for serious programming.
. . . This botch [confusion of size and type]

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1007

Nelson H. F. Beebe

PROCEDURE Scanfilename;
LABEL 30;
BEGIN
beginname;
WHILE buffer[curinput.locfield] = 32 DO
curinput.locfield := curinput.locfield+1;

WHILE true DO
BEGIN
IF (buffer[curinput.locfield] = 59) OR

(buffer[curinput.locfield] = 37) THEN
GOTO 30;

IF NOT morename(buffer[curinput.locfield])
THEN GOTO 30;
curinput.locfield := curinput.locfield+1;

END;
30:

endname;
END;

Figure 3: Filename scanning in PASCAL, after
manual prettyprinting. The statements beginname
and endname are calls to procedures without
arguments. The magic constants 32, 37, and
59 would normally have been given symbolic
names, but this code is output by the TANGLE

preprocessor which already replaced those names
by their numeric values. The lack of statements
to exit loops and return from procedures
forces programmers to resort to the infamous
goto statements, which are required to have
predeclared numeric labels in PASCAL.

is the biggest single problem in PASCAL. . . .
I feel that it is a mistake to use PASCAL for any-
thing much beyond its original target. In its
pure form, PASCAL is a toy language, suitable
for teaching but not for real programming.

There is also a good survey of ambiguities and in-
securities of the language by Welsh, Sneeringer, and
Hoare [53].

Donald Knuth had co-written a compiler for a
subset of ALGOL 60 two decades earlier [2], and
had written extensively about that language [41, 21,
20, 22, 24, 25]. Moreover, he had developed the
fundamental theory of parsing that is used in com-
pilers [23]. He was therefore acutely aware of the
limitations of PASCAL, and to enhance portability of
TEX and METAFONT, and presciently (see Section 8),
to facilitate future translation to other languages,
sharply restricted his use of features of that language
[37, Part 1].

The botch that Brian Kernighan criticized has
to do with the fact that in PASCAL, object sizes are
part of their type: if you declare a variable to hold
ten characters, then it is illegal to assign a string of
any other length to it, and if it appears as a routine
argument, then all calls to that routine must pass a
string of exactly the correct length.

Donald Knuth’s solution to this extremely vex-
ing problem for programs like TEX and METAFONT

that mainly deal with streams of input characters
was to not use PASCAL directly, but rather, to dele-
gate the problem of character-string management,
and other tasks, to a preprocessor, called TANGLE.
This tool, and its companion WEAVE, are fundamen-
tal for the notion of literate programming that he de-
veloped during this work [34, 50].

Because PASCAL had mainly been used for small
programs, few compilers for that language were pre-
pared to handle programs as large and complex as
TEX and METAFONT. Their PASCAL source code pro-
duced by TANGLE amounts to about 20,000 lines
each when prettyprinted.

Ports of TEX and METAFONT to new systems fre-
quently uncovered compiler bugs or resource limits
that had to be fixed before the programs could op-
erate. The 16-bit computers were particularly chal-
lenging because of their limited address space, and it
was a remarkable achievement when Lance Carnes
announced TEX on the HP3000 in 1981 [5], fol-
lowed not long after by his port to the IBM PC with
the wretched 64KB memory segments of the Intel
8086 processor. He later founded a company, Per-
sonal TEX, Inc. About the same time, David Fuchs
completed an independent port to the IBM PC, and
that effort was briefly available commercially. David
Kellerman and Barry Smith left Oregon Software,
where they worked on PASCAL compilers, to found
the company Kellerman & Smith to support TEX in the
VAX VMS environment. Barry later started Blue Sky
Research to support TEX on the Apple MACINTOSH.

8 Switching languages, again

UNIX users had more of a problem getting TEX and
METAFONT, because of compiler problems. Pavel
Curtis and Howard Trickey first announced a port in
1983 [7], where they noted:

Unhappily, the PC compiler has more deficien-
cies than one might wish.

Their project took several months, and ultimately,
they had to make several changes and extensions to
the PASCAL compiler.

In 1986–1987, Pat Monardo at the University of
California, Berkeley, did the UNIX community a great

1008 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

Keynote Address: The design of TEX and METAFONT: A retrospective

service when he undertook a translation, partly ma-
chine assisted, and partly manual, of TEX from PAS-
CAL to C, the result of which he called COMMON TEX.
That work ultimately led to the Web-to-C project to
which many people have contributed, and today, vir-
tually all UNIX installations, and indeed, the entire
TEXLive distribution for UNIX and Microsoft WIN-
DOWS, is based on the completely automated trans-
lation of the master source files of all TEXware and
METAFONTware from the Web sources to PASCAL

and then to C.
Although we shall not further describe it here,

it is worth noting that yet another programming
language has since been used to reimplement TEX:
Karel Skoupý’s work with JAVA [14].

Another interesting project is Achim Blumen-
sath’s ANT: A Typesetting System [4], where the re-
cursive acronym means ANT is not TEX. The first ver-
sion was done in the LISP dialect SCHEME, and the
current version is in OCAML. Input is very similar
to TEX markup, and output can be DVI, PostScript,
or PDF.

9 Wrapping up

In this article, I have described how architecture,
operating systems, programming languages, and re-
source limits influenced the design of TEX and META-
FONT. This analysis is in no way intended to be crit-
ical, but instead, offer a historical retrospective that
is, I believe, helpful to think about for other widely-
used software packages as well.

TEX and METAFONT, and the literate program-
ming system in which they are written, are truly
remarkable projects in software engineering. Their
flexibility, power, reliability, and stability, and their
unfettered availability, have allowed them to be
widely used and relied upon in academia, industry,
and government. Donald Knuth expects to use them
for the rest of his career, and so do many others,
including this author. His willingness to expose his
programs to public scrutiny by publishing them as
books [37, 39], and then to further admit to errors
in them [33] in order to learn how we might become
better programmers, are traits too seldom found in
others.

References

[1] Urs Ammann. On code generation in a PAS-
CAL compiler. Software—Practice and Experi-
ence, 7(3):391–423, May/June 1977. CODEN
SPEXBL. ISSN 0038-0644.

[2] G. A. Bachelor, J. R. H. Dempster, D. E. Knuth,
and J. Speroni. SMALGOL-61. Communica-
tions of the Association for Computing Machin-

ery, 4(11):499–502, November 1961. CODEN
CACMA2. ISSN 0001-0782. URL http://doi.
acm.org/10.1145/366813.366843.

[3] J. W. Backus, F. L. Bauer, J. Green, C. Katz,
J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein,
A. van Wijngaarden, and M. Woodger. Revised
report on the algorithmic language Algol
60. Communications of the Association for
Computing Machinery, 6(1):1–17, January
1963. CODEN CACMA2. ISSN 0001-0782.
URL http://doi.acm.org/10.1145/366193.
366201. Edited by Peter Naur. Dedicated to
the memory of William Turanski.

[4] Achim Blumensath. ANT: A typesetting
system. World-Wide Web document
and software, October 24, 2004. URL
http://www-mgi.informatik.rwth-aachen.
de/~blume/Download.html.

[5] Lance Carnes. TEX for the HP3000. TUGboat, 2
(3):25–26, November 1981. ISSN 0896-3207.

[6] M. Crispin. RFC 4042: UTF-9 and UTF-18
efficient transformation formats of Unicode,
April 2005. URL ftp://ftp.internic.
net/rfc/rfc4042.txt,ftp://ftp.math.
utah.edu/pub/rfc/rfc4042.txt. Status:
INFORMATIONAL.

[7] Pavel Curtis and Howard Trickey. Porting TEX
to VAX/UNIX. TUGboat, 4(1):18–20, April
1983. ISSN 0896-3207.

[8] Edward R. Fiala. MAXC systems.
Computer, 11(5):57–67, May 1978.
CODEN CPTRB4. ISSN 0018-9162. URL
http://research.microsoft.com/~lampson/
Systems.html#maxc.

[9] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LATEX Companion.
Tools and Techniques for Computer
Typesetting. Addison-Wesley, Reading, MA,
USA, 1994. ISBN 0-201-54199-8. xxi + 528
pp. LCCN Z253.4.L38 G66 1994.

[10] Michel Goossens and Sebastian Rahtz. The
LATEX Web companion: integrating TEX, HTML,
and XML. Tools and Techniques for Com-
puter Typesetting. Addison-Wesley Longman,
Harlow, Essex CM20 2JE, England, 1999. ISBN
0-201-43311-7. xxii + 522 pp. LCCN
QA76.76.H94G66 1999. With Eitan M. Gurari
and Ross Moore and Robert S. Sutor.

[11] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion: Il-
lustrating Documents with TEX and PostScript.

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1009

Nelson H. F. Beebe

Tools and Techniques for Computer Type-
setting. Addison-Wesley, Reading, MA, USA,
1997. ISBN 0-201-85469-4. xxi + 554 pp.
LCCN Z253.4.L38G663 1997.

[12] Ralph E. Gorin. Introduction to DECSYSTEM-
20 Assembly Language Programming. Digital
Press, 12 Crosby Drive, Bedford, MA 01730,
USA, 1981. ISBN 0-932376-12-6. xxx + 545
pp. LCCN QA76.8.D17 .G67.

[13] Katie Hafner and Matthew Lyon. Where wiz-
ards stay up late: the origins of the Inter-
net. Simon and Schuster, New York, NY, USA,
1996. ISBN 0-684-81201-0. 304 pp. LCCN
TK5105.875.I57H338 1996.

[14] Hans Hagen. The status quo of the NT S
project. TUGboat, 22(1/2):58–66, March
2001. ISSN 0896-3207.

[15] Ken Harrenstien. KLH10 PDP-10 emula-
tor. World-Wide Web document and software,
2001. URL http://klh10.trailing-edge.
com/. This is a highly-portable simulator that
allows running TOPS-20 on most modern Unix
workstations.

[16] John Douglas Hobby. Digitized Brush
Trajectories. Ph.D. dissertation, Department
of Computer Science, Stanford University,
Stanford, CA, USA, June 1986. 151 pp. URL
http://wwwlib.umi.com/dissertations/
fullcit/8602484. Also published as report
STAN-CS-1070 (1985).

[17] Brian W. Kernighan. Why Pascal is not my fa-
vorite programming language. Computer Sci-
ence Report 100, AT&T Bell Laboratories, Mur-
ray Hill, NJ, USA, July 1981. URL http://cm.
bell-labs.com/cm/cs/cstr/100.ps.gz. Pub-
lished in [18].

[18] Brian W. Kernighan. Why Pascal is not my
favorite programming language. In Alan R.
Feuer and Narain Gehani, editors, Comparing
and assessing programming languages: Ada,
C, and Pascal, Prentice-Hall software series,
pages 170–186. Prentice-Hall, Englewood
Cliffs, NJ, USA, 1984. ISBN 0-13-154840-9
(paperback), 0-13-154857-3 (hard). LCCN
QA76.73.A35 C66 1984. See also [17].

[19] Brian W. Kernighan and P. J. Plauger. Software
Tools in Pascal. Addison-Wesley, Reading, MA,
USA, 1981. ISBN 0-201-10342-7. ix + 366 pp.
LCCN QA76.6 .K493.

[20] D. E. Knuth, L. L. Bumgarner, D. E. Hamilton,
P. Z. Ingerman, M. P. Lietzke, J. N. Merner, and
D. T. Ross. A proposal for input-output conven-
tions in ALGOL 60. Communications of the As-

sociation for Computing Machinery, 7(5):273–
283, May 1964. CODEN CACMA2. ISSN 0001-
0782. URL http://doi.acm.org/10.1145/
364099.364222. Russian translation by M. I.
Ageev in Sovremennoe Programmirovanie 1
(Moscow: Soviet Radio, 1966), 73–107.

[21] Donald E. Knuth. Man or boy? Algol Bulletin
(Amsterdam: Mathematisch Centrum), 17(??):
7, January 1964. CODEN ALGOBG. ISSN
0084-6198.

[22] Donald E. Knuth. Man or boy? Algol Bulletin
(Amsterdam: Mathematisch Centrum), 19(7):
8–9, January 1965. CODEN ALGOBG. ISSN
0084-6198.

[23] Donald E. Knuth. On the translation of lan-
guages from left to right. Information and Con-
trol, 8(6):607–639, December 1965. CODEN
IFCNA4. ISSN 0019-9958. Russian transla-
tion by A. A. Muchnik in �Iazyki i Avtomaty, ed.
by A. N. Maslov and É. D. Stotskĭı (Moscow:
Mir, 1975), 9–42. Reprinted in Great Papers in
Computer Science (1996) [?].

[24] Donald E. Knuth. Teaching ALGOL 60. Algol
Bulletin (Amsterdam: Mathematisch Centrum),
19(??):4–6, January 1965. CODEN ALGOBG.
ISSN 0084-6198.

[25] Donald E. Knuth. The remaining trouble
spots in ALGOL 60. Communications of the
Association for Computing Machinery, 10(10):
611–618, October 1967. CODEN CACMA2.
ISSN 0001-0782. URL http://doi.acm.org/
10.1145/363717.363743. Reprinted in E.
Horowitz, Programming Languages: A Grand
Tour (Computer Science Press, 1982), 61–68.

[26] Donald E. Knuth. Fundamental Algorithms,
volume 1 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA,
1968. ISBN 0-201-03803-X. xxi + 634 pp.
LCCN QA76.5 .K74. Second printing, revised,
July 1969, with page count xxi + 634.

[27] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA,
1969. ISBN 0-201-03802-1. xi + 624 pp.
LCCN QA76.5 .K57.

[28] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA,
1971. ISBN 0-201-03802-1. xii + 624 pp.
LCCN QA76.5 .K57. Second printing, revised,
November 1971.

1010 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

Keynote Address: The design of TEX and METAFONT: A retrospective

[29] Donald E. Knuth. Fundamental Algorithms,
volume 1 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA, sec-
ond edition, 1973. ISBN 0-201-03809-9. xxi
+ 634 pp. LCCN QA76.6 .K641 1973. Second
printing, revised, February 1975.

[30] Donald E. Knuth. Sorting and Searching,
volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA,
1973. ISBN 0-201-03803-X. xii + 722 pp.
LCCN QA76.5 .K74.

[31] Donald E. Knuth. Sorting and Searching,
volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA,
March 1975. ISBN 0-201-03803-X. xii + 725
pp. LCCN QA76.5 .K74. Second printing, re-
vised.

[32] Donald E. Knuth. TEX and METAFONT—New
Directions in Typesetting. Digital Press, 12
Crosby Drive, Bedford, MA 01730, USA, 1979.
ISBN 0-932376-02-9. xi + 201 + 105 pp.
LCCN Z253.3 .K58 1979.

[33] Donald E. Knuth. The errors of TEX. Technical
Report STAN-CS-88-1223, Stanford University,
Department of Computer Science, September
1988. See [33].

[34] Donald E. Knuth. The errors of TEX. Software—
Practice and Experience, 19(7):607–685, July
1989. CODEN SPEXBL. ISSN 0038-0644.
This is an updated version of [?]. Reprinted
with additions and corrections in [34, pp. 243–
339].

[35] Donald E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Stanford University
Center for the Study of Language and Infor-
mation, Stanford, CA, USA, 1992. ISBN 0-
937073-80-6 (paper), 0-937073-81-4 (cloth).
xv + 368 pp. LCCN QA76.6.K644.

[36] Donald E. Knuth. Digital Typography. CSLI
Publications, Stanford, CA, USA, 1999. ISBN
1-57586-011-2 (cloth), 1-57586-010-4 (pa-
perback). xvi + 685 pp. LCCN Z249.3.K59
1998.

[37] Donald E. Knuth. The TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13447-
0. ix + 483 pp. LCCN Z253.4.T47 K58 1986.

[38] Donald E. Knuth. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13437-
3. xv + 594 pp. LCCN Z253.4.T47 K578 1986.

[39] Donald E. Knuth. The METAFONTbook, vol-
ume C of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13445-4. xi + 361 pp. LCCN Z250.8.M46 K58
1986.

[40] Donald E. Knuth. METAFONT: The Program,
volume D of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986. ISBN 0-
201-13438-1. xv + 560 pp. LCCN Z250.8.M46
K578 1986.

[41] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986. ISBN 0-
201-13446-2. xv + 588 pp. LCCN Z250.8.M46
K574 1986.

[42] Donald E. Knuth and Jack N. Merner. ALGOL
60 confidential. Communications of the Associ-
ation for Computing Machinery, 4(6):268–272,
June 1961. CODEN CACMA2. ISSN 0001-
0782. URL http://doi.acm.org/10.1145/
366573.366599.

[43] Leslie Lamport. LATEX—A Document Prepara-
tion System—User’s Guide and Reference Man-
ual. Addison-Wesley, Reading, MA, USA, 1985.
ISBN 0-201-15790-X. xiv + 242 pp. LCCN
Z253.4.L38 L35 1986.

[44] Leslie Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, second edi-
tion, 1994. ISBN 0-201-52983-1. xvi + 272
pp. LCCN Z253.4.L38L35 1994.

[45] Phillip Laplante, editor. Great papers in com-
puter science. IEEE Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1996. ISBN 0-314-06365-X
(paperback), 0-07-031112-4 (hardcover). iv +
717 pp. LCCN QA76 .G686 1996. URL http://
bit.csc.lsu.edu/~chen/GreatPapers.html.

[46] Franklin Mark Liang. Word hy-phen-a-tion
by com-pu-ter. Technical Report STAN-CS-83-
977, Stanford University, Stanford, CA, USA,
August 1983.

[47] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Chris-
tine Detig, and Joachim Schrod. The LATEX
Companion. Tools and Techniques for Com-
puter Typesetting. Addison-Wesley, Reading,
MA, USA, second edition, 2004. ISBN 0-201-
36299-6. xxvii + 1090 pp. LCCN Z253.4.L38
G66 2004.

[48] Sao Khai Mong. A Fortran version of META-
FONT. TUGboat, 3(2):25, October 1982. ISSN
0896-3207.

TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting 1011

Nelson H. F. Beebe

[49] William M. Newman and Robert F. Sproull.
Principles of Interactive Computer Graphics.
McGraw-Hill Computer Science Series,
Editors: Richard W. Hamming and Edward
A. Feigenbaum. McGraw-Hill, New York, NY,
USA, 1973. ISBN 0-07-046337-9. xxviii +
607 pp. LCCN T385 .N48.

[50] Michael F. Plass. Optimal pagination techniques
for automatic typesetting systems. Thesis (ph.
d.), Stanford University, Stanford, CA, USA,
1981. vi + 72 pp.

[51] Lynn Elizabeth Ruggles. Paragon, an in-
teractive, extensible, environment for typeface
design. Ph.D. dissertation, University of
Massachusetts Amherst, Amherst, MA, USA,
1987. 192 pp. URL http://wwwlib.umi.com/
dissertations/fullcit/8805968.

[52] E. Wayne Sewell. Weaving a Program: Literate
Programming in WEB. Van Nostrand Reinhold,
New York, NY, USA, 1989. ISBN 0-442-31946-
0. xx + 556 pp. LCCN QA76.73.W24 S491
1989.

[53] Guy L. Steele Jr. Common Lisp—The Language.
Digital Press, 12 Crosby Drive, Bedford, MA
01730, USA, 1984. ISBN 0-932376-41-X. xii
+ 465 pp. LCCN QA76.73.L23 S73 1984.
US$22.00.

[54] Guy L. Steele Jr. Common Lisp—The Lan-
guage. Digital Press, 12 Crosby Drive, Bed-
ford, MA 01730, USA, second edition, 1990.
ISBN 1-55558-041-6 (paperback), 1-55558-
042-4 (hardcover), 0-13-152414-3 (Prentice-
Hall). xxiii + 1029 pp. LCCN QA76.73.L23
S73 1990. See also [51].

[55] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare.
Ambiguities and insecurities in Pascal. Soft-
ware—Practice and Experience, 7(6):685–696,
November/December 1977. CODEN SPEXBL.
ISSN 0038-0644.

[56] Niklaus Wirth. The design of a PASCAL com-
piler. Software—Practice and Experience, 1(4):
309–333, October/December 1971. CODEN
SPEXBL. ISSN 0038-0644.

[57] Niklaus Wirth. Algorithms + Data Structures
= Programs. Prentice-Hall Series in Automatic
Computation. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1976. ISBN 0-13-022418-9. xvii +
366 pp. LCCN QA76.6 .W561.

[58] F. H. G. Wright II and R. E. Gorin. FAIL. Com-
puter Science Department, Stanford Univer-
sity, Stanford, CA, USA, May 1974. Stanford
Artificial Intelligence Laboratory Memo AIM-
226 and Computer Science Department Report
STAN-CS-74-407.

[59] Ignacio Andres Zaballa Salelles. Interfacing
with graphics objects. PhD thesis, Depart-
ment of Computer Science, Stanford Univer-
sity, Stanford, CA, USA, December 1982. 146
pp.

1012 TUGboat, Volume 0 (2001), No. 0 — Proceedings of the 2001 Annual Meeting

	Contents
	Introduction
	Computers and people
	The DEC PDP-10
	Resource limits
	Choosing a programming language
	Switching programming languages
	Switching languages, again
	Wrapping up

