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Abstract. Spin-projected Hartree-Fock calculations using general spin orbitals are per- 
formed on some S, P, D and F states of Li, and on the ground states of its isoelectronic 
ions with Z = 4-10. The energy -7,447596au is obtained for Li 2’S, compared to 
- 7.447565 au with the spin-optimized SCF method and - 7,432727 au with the ordinary 
restricted Hartree-Fock method. Full configuration-interaction results for the same 
basis sets are also reported. 

1. Introduction 

The projected Hartree-Fock (PHF) method was suggested by Lowdin (1955) as an 
extension of the ordinary Hartree-Fock method. In this method, the total wavefunction 
is written as a projected determinant 

where 0 is a symmetry projection operator and the spin orbitals {I),(.)} in the general 
case are of the form 

The wavefunction (1 )  contains for a three-electron system as a special case (Lune11 
1968, 1972) the so-called spin-optimized SCF (SOSCF) or best orbital (Kothni 1958) 
wavefunction, which for a three-electron doublet state has the form 

Here O1 and O2 are two linearly independent doublet spin functions, for example: 
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The wavefunction (3) is obtained from (1) by choosing the restricted form 

for the general spin orbitals (GSO) (2). 
Spin-projected Hartree-Fock calculations using GSO of the form (2) have been 

reported before for some members of the He isoelectronic series (Lunell 1970). In this 
paper, the method (PGSO) is applied to different states of the Li atom, as well as some of its 
isoelectronic ions, which have several mathematical and physical features which are 
not present in the two-electron systems previously investigated. The projection operator 
Q has the form 

3' - k(k + 1) 
Os = cs S ( S +  1)-k(k+ 1)' 

3,-k 
%fs = n - 

k+Ms'Smk 
(7)  

with S = M s  = 3 for the doublet states considered. 

of the systems using the same basis sets are also reported. 
For comparison purposes, full configuration-interaction (FCI) calculations for some 

2. Method of calculation 

The spin orbitals (2) were determined according to a method described elsewhere 
(Lunell 1970 section IIB, 1973). As input for the iterations, the SOSCF functions were 
used, written in the form (1). These functions have been published previously for Li 2's. 
Li 2'P and B2+ 2's (Ladner and Goddard 1969, Kaldor and Harris 1969) and were 
calculated for the other states. The same basis sets were used for both the PGSO and 
SOSCF calculations, in order to eliminate basis-dependent differences from the compari- 
sons. In the cases where only SOSCF energies, and not wavefunctions, have been published, 
basis sets were found which reproduced the published energies. 

3. Results 

The energies obtained for Li and some isoelectronic ions are shown in table 1, together 
with the ordinary (restricted) Hartree-Fock (RHF) energies and the SOSCF energies. 
From this table one can see that the PGSO energy for Li 2's is - 7.447596 au, which is 
only 3 x au lower than the SOSCF energy -7.447565 au (Ladner and Goddard 
1969, Kaldor and Harris 1969). This can be compared to the two-electron case (Lunell 
1970), where for Li' an energy difference of au is obtained hetween the wave- 
functions 

(8) @L'T(x,. x2) = c Q 2 ~ , ( Y , ) ~ 2 ( Y z ) ( X , a 2  -P1%)2- l t 2  

and 
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Table 1. Energies of different states of Li and Li-like ions. The SOSCF and PGSO results 
were obtained using the same basis set for a given state. 

RHFd SOSCF PGSO Experimentb 

Li 2's - 7.432727' - 7,447565"' - 7447596 - 747807 
2'P - 7,365068 - 7.380087d.e -7.380191 -741016 
3*s - 7,310209 -7.325179d -7,325183 -7,35410 
32P - 7.293 185 -7.308198d - 7,308233 - 7.33715 

Be' 2's - 14.27739 - 14.291637d*' - 14.291693 - 14,32481 
B z +  2's -23,37599 - 23.389920d.' -23.389978 - 2342478 
Ne7* 22S - 102,6311 - 102,644482 - 102,644578 - 102,68271 

a Weiss (1963). 

E Roothaan et al(1960). 

e Kaldor and Harris (1969). 

Scherr et al(1962). 

Ladner and Goddard (1969). 

(the tilde indicates that the orbitals are optimized for the positive ion). Previous experi- 
ence has shown that the energy decrease resulting from an improved description of 
the core is virtually independent of the presence or absence of a valence orbital. One 
therefore expects the wavefunction 

Y1 = d Y ! " - ( X 1 >  x2)43(Y3)a (10) 

y 2  = d41(Y1)62(r2)(ap -ba)43(Y3)a. (1 1) 

to have an energy which is approximately l o p 3  au lower than the function 

The energy of the latter is very close to the SOSCF energy of the atom (Lunell 1968). The 
reason that a corresponding energy lowering is not obtained in the PGSO calculation 
for Li is that (10) cannot be written in the form (1) with Gs given by (6). There is thus an 
analogy with the difference between the spin-extended Hartree-Fock (SEHF) or GF 

function and the SOSCF function, where the use of the simple projection operator (6) 
gives a much smaller energy improvement than a more flexible spin-coupling procedure 
(Lunell 1968, Hameed et  al 1969, Kaldor and Harris 1969, Ladner and Goddard 1969). 

To provide material for a fuller comparison of the different types of wavefunctions, 
the Fermi contact term ( f )  and orbital hyperfine-structure parameter (al) were also 
calculated. With the definitions used by Schaefer et al(1968) these are 

The results obtained in the present calculations are given in tables 2 and 4 and a com- 
parison with some other methods is given in table 4. 

Two types of FCI calculations were performed. The first, which is here denoted as 
CI 1, uses only s and p +  functions for the 'Po states and correspondingly for the other 
symmetries (cf table 2) .  In this way only configurations of the type ss'p+, occur after 
symmetry-projection of each determinant. The PGSO and SOSCF wavefunctions contain 
only configurations of this type. The second, c12, adds the po and p- components to the 
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Table 2. FCI results for several systems. The lowest roots of the secular problem are reported. 
as well as the total charge density at the nucleus and some HFS parameters. The number of 
configurations, basis sets, and projections applied are also listed. The basis sets are in each 
case originally optimized for the state which is underlined m the table. 

System 
Type of basis set 
and projections 

Li *S 

112 CIa 
Li 'Po 
80 CIb 

Li 'pa 
330 cib 
Li 'Po 
250 cr" 
Li 'Po 
175 ad 

Li 'D 
125 C I ~  
Li 'F 
80cr' 

s only 

s, P+ 
L2,  L, projection 

s, Po3 P + >  P- 
L, projection 

S > P O > P + > P -  
L,,  L' projections 

s, P +  
L,, L2 projections 

s, d + 2  
L', L, projections 
s, f+ 3 

L2,  L, projections 

'rota1 
energy 

-7448571 

- 7.381428 
- 7,305232 

- 7,394667 
-7.318509 

-7,394921 
-7,318697 

-7,381693 
- 7,309338 
- 7,284090 

- 7,307910 

- 7,283229 

17 1.626 
171.776 

170,977 
17 1.120 

171,799 
171,911 

172.433 
172.593 
172.636 

172.67 1 

171,912 

2,8009 0.0 

- 0.2306 0.06070 
-0.1108 0.02612 

- 0,2260 0,06038 
- 0.1090 0.02600 

-0.1880 0.06075 
- 0.0954 0.02594 

-0,1924 0,06131 
-0,0617 0,01807 
- 0,0246 0.00708 1 

- OQ0033 OC04999 

-0~00027 0001205 
~~ ~~~ ~~ ~ ~~ 

a l~(3.0), 3~(5.4, 2,9972, 1,3465, 0,8451 j, 4~(5,33, 0.7257). 
1~(2.944), 3d9.546, 4,3055, 2,9228), 2p(1.5053), 4p(2.1161, 1,2041, 0,7316, 0.5316). 
ls(5.3, 2.443), 2~(5,3, 2.443), 3~(2443),  2p(13053), 4p(2,1161, 1,2041, 0.7316, 0.5316). 
ls(5.3, 2.443), 2~(5.3, 2.443), 3~(2.443), 2p(l.5), 4p(2,12, 1,275, 0.785, 0.63, 0,37, 0.21). 

e l~(5 .3 ,  2.443), 2~(5.3, 2.443), 3~(2,443), 3d(l.0), 5d(1.762,0.98,0.60,0.404). 
1~(2,944), 3~(9,546, 4,3055, 2.9228), 4f(0.7859), 6f(l.473, 0.8382, 0.5093, 0.37). 

basis set, allowing also configurations such as popbp+ ,, and then only an Lz projection 
is applied. Since this is an FCI, the solution of the secular equation should find the 
remaining L2 symmetry. A third type of CI, C I ~ ,  was also performed, where in addition 
an L2 projection was applied to c12. This reduces the number of configurations since 
some are annihilated and others become identical. As an example, the number of 
configurations for basis b in table 2 was reduced from 330 to 205. The c12 and c13 
calculations produced identical energies and HFS expectation values within the numerical 
accuracy of the calculations. 

4. Discussion 

In table 3, we present the natural spin-orbital occupation numbers obtained from the 
first-order reduced density matrix for the SOSCF, PGSO and FCI wavefunctions computed 
in the same basis set. The PGSO and SOSCF values are quite similar, but the former are 
nearer the FCI values. The differences follow the general trend that a decrease in large 
occupation numbers and an increase in small ones is the normal behaviour as the corre- 
lation in a wavefunction is increased. It can be noted that, neglecting the valence orbital, 
the occupation numbers for the PGSO function for Li' are much closer to the accurate 
(FCI) occupation numbers for Li than either the SOSCF ex the PGSO ones for the neutral 
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Table 3. Occupation numbers from NSO analysis of different wavefunctions for Li 22S and 
2’P and Li+ ‘S. 

2 2 s  PGSO ; Li + SOSCF PGSO FCI (112 CI) 

Sa - 0.999999 0.999994 0.9999933 79 
sa 0,998512 0.998654 0,998649 0.998537199 
S P  0,998512 0,998654 0,998644 0.998533796 
sa 0,001459 0.001346 0.00 135 5 0.001433150 
S P  OG01459 OW1345 0.001 352 0.00 1428 3 69 
sa 0.000024 0.000001 0.000004 0400032339 

omoo02 0~000033029 0~000024 - 

- - 4x10-7  0@00@33364 
2 x  10-8 OGOO003965 
10-1° OOOQO00566 

- - 10-I’  0~000000836 
- - lo-’’ 0 4 ” M l 0 6  

S P  

S P  

S P  

S P  

SZ 
- - 

- - SE 

22P PGSO ; Li + a  SOSCFb PGSO FCI (80 CI) 

P+T 
SCI 

S P  

S P  

S P  

S P  

P + P  

P + P  

SCI 

Sa 

SCI 

P + E  

- 

0,9985 12 
0,998512 
0,001459 
0,001459 
O.ooOo24 
0.000024 
- 

0,999999 
0,998599 
0,998598 
0.001402 
0.00 1401 

0.999977 
0,998590 
0,998572 
0.00 1423 
0.00 14 10 
OQOO005 
10-9 
10-9 
1 0 - 1 2  

O~ooOo14 
0000005 
OGOO003 

0,999866520 
0,998400 108 
0,998429793 
0.00 157 1642 
0.001489442 
O.oooO69007 
0~000036 108 
0~000002179 
ON@001721 
OGOGO428 3 6 
0~000089600 
0~000000099 

a Lunell (1970). 
Lunell (1973). 

Table 4. Hyperfine-structure parameters for Li (au). The SOSCF, PGSO and FCI results were 
obtained using the same basis set for a given state. 

System Method f Reference 

Li z2S RHF 2,095 
SOSCF 2,849 

PGSO 

FCI (1 12 CI) 
Experiment 

Li2’P RHF 
SOSCF 

PGSO 
Radial FCI (80 a) 
Experiment 

2.802 
2,801 
2,906 
0.0 

-0,2132 
- 0,2243 
- 0,2306 
- 0,2128 

0.0 
0.0 

0.0 
0.0 

0.05 8 56 
0.058 7 6 
0.05926 
0.06070 
0,06258 

Sachs (1960) 
Kaldor and Harris (1969), 
Ladner and Goddard (1969) 
This paper 
This paper 
Kusch and Taub (1949) 
Goodings (1961) 
Lunell (1973) 
This paper 
This paper 
Lyons and Das (1970) 

atom. This illustrates the fact that the PGSO wavefunction for the ion gives a better 
description of the radial correlation in the core than the PGSO function for the atom, as 
discussed in 4 3. 
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Comparing the energies in tables 1 and 2, we find that for Li 2’S, SOSCF obtains 
93.6 % of the correlation energy, and PGSO 93.8 %, where the correlation energy is here 
understood as the difference between the FCI (CI I )  and RHF energies within this basis set. 
These are radial correlation energies, since the basis set contains only s functions. For 
Li 2’P, the figures are 91.8 % and 92.4 %, respectively, and these are also radial correlation 
energies. The total correlation energy for this basis set obtained from an FCI calculation 
with angular correlation included ( ~ 1 2 )  consists of 6443 % radial correlation and 35.2 % 
angular correlation. 

Turning to the Fermi contact term, which is given in tables 2 and 4, one can note 
that for both the 22S and 22P states the SOSCF values agree somewhat better with experi- 
ment than either the PGSO or the FCI results, which on the other hand are relatively close 
to each other. One can thus see that a full CI calculation within a certain basis, even 
though it necessarily must yield a better energy than other methods that are defined 
within the same basis set such as RHF, SOSCF or PGSO, not necessarily gives better results 
for expectation values, such as the Fermi contact term. Whether the good agreement 
between the SOSCF results and experiment should be considered as caused by a fortuitous 
cancellation of errors or as a more deep-rooted optimal property of the method can 
only be decided after a closer analysis. 

For the orbital term, which is not so sensitive to the details of the wavefunction, 
one obtains an improvement for the 2’P state between the different methods which 
essentially follows the improvement in energy. One should note that the improvement 
in a, which is obtained with general spin orbitals is quite noticeable, which is also the 
case for the energy of the 2’P state, where the improvement is more than three times 
larger than in the 2’s state. This is reflected also in the eigenvalue spectrum for the 
natural spin orbitals, which is much more altered for the 2’P state than the 2’s state 
(cf table 3). 

5.  Conclusions 

In the applications considered in this paper the spin-optimized SCF method and the 
PHF method with general spin orbitals give rather similar results for both energy and 
HFS constants, in both cases considerably better than the ordinary restricted Hartree- 
Fock method, or a straight PHF calculation with pure spin orbitals. Judging from the 
rather limited numerical experience available, the computational complexity of the two 
methods also seems rather similar. There is, however, one feature which is likely to 
cause serious trouble if the methods are to be used for larger systems. This is the occur- 
rence of non-orthogonal orbitals or orbital components, which makes the construction 
of determinantal matrix elements much more time-consuming than with orthogonal 
orbitals. These difficulties increase severely as the number of electrons, N, increases, 
because matrix element evaluation requires the determination of overlap matrix co- 
factors, which at best can be done with the N 3  Cholesky decomposition (Wilkinson 1965). 
Since this non-orthogonality is fundamental to the methods, it seems rather difficult 
to circumvent whatever type of computational method is used for the determination 
of the wavefunctions. The biggest system which so far has been treated with the SOSCF 
system is the nitrogen atom, with seven electrons (Kaldor 1970). 

It should also be mentioned that the convergence of the iterative method described 
in 0 2 was very slow in the PGSO case, typically of the order au per iteration, except 
in the first few iterations, and was not improved by any of the extrapolation methods 
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that were tried. The present calculations may not, however, be representative in this 
respect, since the same iterative method has been used successfully in other connections 
(see eg Mayer 1974). 
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