
OpenMP:

A Proposed Industry Standard API for Shared

Memory Programming

October 1997

1 Introduction

It has long been recognized that the two necessary elements for achieving parallel
scalability in application performance are scalable hardware and scalable soft-
ware. Both these elements have existed for some time in their lowest common
denominator form. Speci�cally, scalable hardware in the context of physically
distributed memories connected through a scalable interconnection network such
as a multistage interconnect, k-ary n-cube, or fat tree, have been commercially
available since the 1980's. When such systems are built without any provision
for cache coherence they are essentially \zeroth order" scalable architectures.
In other words, such systems provide only a scalable interconnection network,
and the burden of scalability then falls on the software. As a result scalable
software for such systems will exist, at some level, only in a message passing
model. Message passing is the native model for these architectures, and higher
level models can only be built on top of message passing.

Unfortunately, this situation has existed long enough that there is now an
implicit assumption in the high performance computing world that the only way
to achieve scalability in parallel software is with a message passing programming
model. This is not necessarily true. There is now an emerging class of multipro-
cessor architecture with scalable hardware support for cache coherence. These
are generally referred to as Scalable Shared Memory Multiprocessor, or SSMP,
architectures [1]. For SSMP systems the native programming model is shared
memory, and message passing is built on top of the shared memory model. On
such systems, software scalability is straightforward to achieve with a shared
memory programming model.

In the shared memorymodel every processor has direct access to the memory
of every other processor in the system. This means a processor can directly load
or store any shared address. The programmer also can declare certain pieces
of memory to be private to the processor. This provides a very simple yet

1

OpenMP: A Standard API for Shared Memory Programming 2

powerful model to the programmer for expressing and managing parallelism in
an application.

Despite its promise of simplicity and scalability, many developers have re-
sisted adopting a shared memory programming model in parallelizing their ap-
plications for one simple reason: portability. Every vendor of a shared memory
system has created its own proprietary extensions to Fortran or C for developers
to use in developing parallel software. However, the absence of portability has
forced many developers to instead adopt a portable message passing model like
the Message Passing Interface (MPI) or Parallel Virtual Machine (PVM). This
paper presents a portable alternative to message passing: OpenMP.

2 Why a New Standard?

The closest approximation to a standard shared memory programming model
is the now dormant ANSI X3H5 standards e�ort [2]. X3H5 was never formally
adopted as a standard largely because interest waned as distributed memory
MPP's came in vogue. Nonetheless it is supported to varying degrees by many
hardware vendors. However, X3H5 has some important limitations that make
it unsuitable for other than loop level parallelism. Consequently, applications
adopting this model are often limited in their parallel scalability.

The message passing programming model has been very e�ectively stan-
dardized by MPI. MPI is a portable, widely available and accepted standard for
writing message passing programs. Unfortunately message passing is generally
a di�cult way to program. It requires that the program's data structures be
explicitly partitioned so the entire application must be parallelized in order to
work with the partitioned data structures. There is no incremental path to par-
allelizing an application. Furthermore, modern multiprocessor architectures are
increasingly providing hardware support for cache coherence, therefore message
passing is becoming unnecessary and overly restrictive for these systems.

Pthreads is an accepted standard for shared memory in the low end. However
it is not targeted at the Technical/HPC space. There is very little Fortran
support for pthreads and it is not a scalable approach. Even for C applications
the pthreads model is awkward because it is lower level than necessary for
most scienti�c applications, and is targeted more at providing task parallelism
with very little support for data parallelism. Also, portability to unsupported
platforms requires a stub library or equivalent workaround.

There have been many new languages de�ned for parallel computing, but
largely they have not been adopted in the mainstream. HPF is the most popu-
lar multiprocessing derivative of Fortran but it is mostly geared to distributed
memory systems.

Independent software developers of scienti�c applications as well as govern-
ment laboratories have a large volume of Fortran77 code that needs to get par-
allelized in a portable fashion. The rapid and widespread acceptance of shared

OpenMP: A Standard API for Shared Memory Programming 3

X3H5 MPI Pthreads HPF OpenMP

Scalable no yes sometimes yes yes

Incremental
parallelization yes no no no yes

Portable yes yes yes yes yes

Fortran binding yes yes no yes yes

High level yes no no yes yes

Supports data
parallelism yes no no yes yes

Performance oriented no yes no tries yes

Table 1: Comparison of various standard parallel programming models.

memory multiprocessor architectures, from the desktop to the \glass houses",
has created a pressing demand for a portable way to program these systems.
This is driven largely by the desire to begin parallelizing existing code without
having to completely rewrite it. This is not possible with most existing parallel
language standards, as is evident in Table 1. It's clear from this table that only
OpenMP and X3H5 allow incremental parallelization of existing code, and of
those two only OpenMP is scalable. OpenMP is targeted to developers who need
to quickly parallelize existing scienti�c code, but it remains exible enough to
support a much broader application set than just scienti�c computing. OpenMP
provides an incremental path for parallel conversion of any existing software, as
well as scalability and performance for a complete rewrite or an entirely new
development.

3 What is OpenMP?

At its most elemental level, OpenMP is a set of compiler directives and callable
runtime library routines that extend Fortran (and separately, C and C++) to
express shared memory parallelism. The base language is left unspeci�ed and
vendors may implement OpenMP in any Fortran compiler. Naturally, Fortan
90 and Fortran 95 require the OpenMP implementation to include additional
semantics over Fortran 77 in order to support pointers and allocatables.

OpenMP leverages many of the X3H5 concepts while extending them to

OpenMP: A Standard API for Shared Memory Programming 4

support coarse grain parallelism. Table 2 compares OpenMP with X3H5 and
the SGI DOACROSS model [3].

The language extensions fall into one of three categories: control structures,
data environment, and synchronization. The standard also includes a callable
runtime library with accompanying environment variables. Table 2 summarizes
the language extensions in terms of these categories.

3.1 A Simple Example

Figure 1 presents a simple code example for computing PI using OpenMP. This
example is meant only to illustrate how a simple loop may be parallelized in a
shared memory programming model. The code would look quite similar with
either the DOACROSS or the X3H5 set of directives (except that X3H5 does
not have a REDUCTION attribute so you would have to code it yourself).

Program execution begins as a single process. This initial process executes
serially and we can set up our problem in a standard sequential manner, read-
ing and writing stdout as necessary. When we �rst encounter a PARALLEL
construct, in this case a PARALLEL DO, a team of one or more processes is
formed, and the data environment for each team member is created. The data
environment here consists of one PRIVATE variable, x, one REDUCTION vari-
able, sum, and one SHARED variable, w. All references to x and sum inside the
parallel region address private, non-shared, copies. The REDUCTION attribute
takes an operator, such that at the end of the parallel region the private copies
are reduced to the master copy using the speci�ed operator. All references to w

in the parallel region address the single master copy. The loop index variable,
i, is PRIVATE by default. The compiler takes care of assigning the appropriate
iterations to the individual teammembers, so in parallelizing this loop you don't
even need to know how many processors you will run it on.

Within the parallel region there may be additional control and synchroniza-
tion constructs, but there are none in this simple example. The parallel region
here terminates with the END DO which has an implied barrier. On exit of
the parallel region, the initial process resumes execution using its updated data
environment. In this case the only change to the master's data environment is
in the reduced value of sum.

This model of execution is referred to as the fork/join model. Throughout
the course of a program, the initial process may fork and join a number of
times. The fork/join execution model makes it easy to get loop level parallelism
out of a sequential program. Unlike in message passing, where the program
must be completely decomposed for parallel execution, in a shared memory
model it is possible to parallelize just at the loop level without decomposing
the data structures. Given a working sequential program, it becomes fairly
straightforward to parallelize individual loops in an incremental fashion and
thereby immediately realize the performance advantages of a multiprocessor
system.

OpenMP: A Standard API for Shared Memory Programming 5

X3H5 OpenMP SGI

Overview

Orphan scope None, lexical Yes, binding Yes, through
scope only rules speci�ed callable runtime

Query functions None Standard Yes
Runtime functions None Standard Yes
Environment variables None Standard Yes
Nested Parallelism Allowed Allowed Serialized
Throughput mode Not de�ned Yes Yes
Conditional Compilation None OPENMP C$

!$
Sentinel C$PAR !$OMP C$

C$PAR& !$OMP& C$&
Control Structures

Parallel region PARALLEL PARALLEL DOACROSS
Iterative PDO DO DOACROSS
Non-iterative PSECTION SECTION User coded
Grouping PGROUP User coded User coded
Single process PSINGLE SINGLE, User coded

MASTER
Early completion PDONE User coded User coded
Work distribution ORDERED PDO ORDERED None
Data Environment

Autoscope None DEFAULT(PRIVATE) shared default
DEFAULT(SHARED)

Global objects INSTANCE PARALLEL THREADPRIVATE Linker: -Xlocal
(p+1 instances) (p instances) (p instances)

Reduction attribute None REDUCTION REDUCTION
Private initialization None FIRSTPRIVATE None

COPYIN COPYIN
Private persistence None LASTPRIVATE LASTLOCAL
Synchronization

Barrier BARRIER BARRIER mp barrier()
Synchronize SYNCHRONIZE FLUSH synchronize()
Critical section CRITICAL SECTION CRITICAL mp setlock,

mp unsetlock()
Atomic update None ATOMIC None
Locks None Full mp setlock(),

functionality mp unsetlock()

Table 2: Comparison of X3H5, OpenMP and SGI DOACROSS functionality.

OpenMP: A Standard API for Shared Memory Programming 6

program compute_pi

integer n, i

double precision w, x, sum, pi, f, a

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

print *, 'Enter number of intervals: '

read *,n

c calculate the interval size

w = 1.0d0/n

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)

!$OMP& REDUCTION(+: sum)

do i = 1, n

x = w * (i - 0.5d0)

sum = sum + f(x)

enddo

pi = w * sum

print *, 'computed pi = ', pi

stop

end

Figure 1: Computing PI in parallel using OpenMP.

OpenMP: A Standard API for Shared Memory Programming 7

For comparison with message passing, Figure 2 presents the same code ex-
ample using MPI. Clearly there is additional complexity just in setting up the
problem for the simple reason that here we begin outright with a team of par-
allel processes. Consequently we need to isolate a root process to read and
write stdout. Since there is no globally shared data, the we have to explicitly
broadcast the input parameters (in this case, the number of intervals for the
integration) to all the processors. Furthermore, we have to explicitly manage
the loop bounds. This requires identifying each processor (myid) and knowing
how many processors will be used to execute the loop (numprocs). When we
�nally get to the loop, we can only sum into our private value for mypi. To
reduce across processors we use the MPI REDUCE routine and sum into pi.
Note that the storage for pi is replicated across all processors, even though only
the root process needs it. As a general rule, message passing programs are more
wasteful of storage than shared memory programs [4]. Finally we can print out
the result, again making sure to isolate just one process for this in order to avoid
printing out numprocs messages.

Finally, it is interesting to see how this example would look using pthreads.
Figure 3 presents the pthreads version for computing PI. Naturally it's written
in C, but we can still compare functionality with the Fortran examples given in
Figures 1 and 2.

Clearly the pthreads version is much more complex than either the OpenMP
or the MPI versions of the code. The reasons are twofold. Firstly, pthreads is
aimed at providing task parallelism, whereas the example is one of data paral-
lelism, i.e. parallelizing a loop. It is evident from the example why pthreads has
not been widely used for scienti�c applications. Secondly, pthreads is somewhat
lower level than we need, even in a task or threads based model. This becomes
clearer as we go through the example.

As with the MPI version, we need to know how many threads will be ex-
ecuting the loop and be able to determine their id's so we can manage the
loop bounds. We get the thread number as a command line argument, and
then use it to allocate an array of thread id's. At this time we also initialize a
lock, reduction mutex, which we'll need for reducing our partial sums into a
global sum for PI. The basic approach we use then is to start a worker thread,
PIworker, for every processor we want to work on the loop. In PIworker we
�rst compute a zero-based thread id and use this to map the loop iterations.
The loop then computes the partial sums into mypi. We add these into the
global result pi, making sure to protect against a race condition by locking.
Finally, since there is no implied barriers on threads, we need to explicitly join
all our threads before we can print out the result of the integration.

Notice in this example that all the data scoping is implicit. In other words,
global variables are shared and automatic variables are thread private. There is
no simple mechanism in pthreads for making global variables private. Implicit
scoping also is more awkward in Fortran because the language is not as strongly
scoped as C.We won't discuss pthreads further in this paper since the limitations

OpenMP: A Standard API for Shared Memory Programming 8

program compute_pi

include 'mpif.h'

double precision mypi, pi, w, sum, x, f, a

integer n, myid, numprocs, i, rc

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

if (myid .eq. 0) then

print *, 'Enter number of intervals: '

read *, n

endif

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c calculate the interval size

w = 1.0d0/n

sum = 0.0d0

do i = myid+1, n, numprocs

x = w * (i - 0.5d0)

sum = sum + f(x)

enddo

mypi = w * sum

c collect all the partial sums

call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,

$ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.

if (myid .eq. 0) then

print *, 'computed pi = ', pi

endif

call MPI_FINALIZE(rc)

stop

end

Figure 2: Computing PI in parallel using MPI.

OpenMP: A Standard API for Shared Memory Programming 9

#include <pthread.h>

#include <stdio.h>

pthread_mutex_t reduction_mutex;

pthread_t *tid;

int n, num_threads;

double pi, w;

double f(a)

double a;

{

return (4.0 / (1.0 + a*a));

}

void *PIworker(void *arg)

{

int i, myid;

double sum, mypi, x;

/* set individual id to start at 0 */

myid = pthread_self()-tid[0];

/* integrate function */

sum = 0.0;

for (i=myid+1; i<=n; i+=num_threads) {

x = w*((double)i - 0.5);

sum += f(x);

}

mypi = w*sum;

/* reduce value */

pthread_mutex_lock(&reduction_mutex);

pi += mypi;

pthread_mutex_unlock(&reduction_mutex);

return(0);

}

OpenMP: A Standard API for Shared Memory Programming 10

void main(argc,argv)

int argc;

char *argv[];

{

int i;

/* check command line */

if (argc != 3) {

printf("Usage: %s Num-intervals Num-threads\n", argv[0]);

exit(0);

}

/* get num intervals and num threads from command line */

n = atoi(argv[1]);

num_threads = atoi(argv[2]);

w = 1.0 / (double) n;

pi = 0.0;

tid = (pthread_t *) calloc(num_threads, sizeof(pthread_t));

/* initialize lock */

if (pthread_mutex_init(&reduction_mutex, NULL))

fprintf(stderr, "Cannot init lock\n"), exit(1);

/* create the threads */

for (i=0; i<num_threads; i++)

if(pthread_create(&tid[i], NULL, PIworker, NULL))

fprintf(stderr,"Cannot create thread %d\n",i), exit(1);

/* join threads */

for (i=0; i<num_threads; i++)

pthread_join(tid[i], NULL);

printf("computed pi = %.16f\n", pi);

}

Figure 3: Computing PI in parallel using pthreads.

OpenMP: A Standard API for Shared Memory Programming 11

of that model for expressing data parallelism should now be abundantly clear.

3.2 Scalability

Although simple and e�ective, loop level parallelism is usually limited in its
scalability because it typically leaves some constant fraction of sequential work
in the program that by Amdahl's law can quickly overtake the gains from parallel
execution. It is important however to distinguish between the type of parallelism
(e.g. loop level versus coarse grained) and the programming model. The type
of parallelism exposed in a program is dependent on the algorithm and data
structures employed and not on the programming model. Therefore given a
parallel algorithm and a scalable shared-memory architecture, a shared memory
implementation scales as well as a message passing implementation.

OpenMP introduces the very powerful concept of orphan directives that
greatly simplify the task of implementing coarse grain parallel algorithms. Or-
phan directives are directives encountered outside the lexical extent of the par-
allel region. Coarse grain parallel algorithms typically consist of a single parallel
region with most of the execution taking place within that single region. In im-
plementing a coarse grained parallel algorithm, it becomes desirable, and often
necessary, to have the ability to specify control or synchronization from any-
where inside the parallel region, not from just the lexically contained portion.
OpenMP provides this functionality by specifying binding rules for all directives
and allowing them to be encountered dynamically in the call chain originating
from the parallel region. In contrast, X3H5 does not allow directives to be or-
phaned, so all the control and synchronization for the program must be lexically
visible in the parallel construct. This is highly restrictive to the programmer and
makes any non-trivial coarse grained parallel application virtually impossible to
write.

4 A More Complicated Example

To highlight additional features in the standard we present a slightly more
complicated example which computes the energy spectrum for a �eld. This is
essentially a histogramming problem but with a slight twist in that the sequence
also is being generated in parallel. The histogramming loop and the sequence
generation both could be easily parallelized as in the previous example, but in
the interest of performance we would like to histogram as we compute in order
to preserve locality.

The program goes immediately into a parallel region with a PARALLEL
directive. The variables field and ispectrum are declared SHARED, and
everything else is made PRIVATE with a DEFAULT clause. Note that this
does not a�ect common blocks, so setup remains a shared data structure.

OpenMP: A Standard API for Shared Memory Programming 12

parameter(N = 512, NZ = 16)

common /setup/ npoints, nzone

dimension field(N), ispectrum(NZ)

data npoints, nzone / N, NZ /

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(field, ispectrum)

call initialize_field(field, ispectrum)

call compute_field(field, ispectrum)

call compute_spectrum(field, ispectrum)

!$OMP END PARALLEL

call display(ispectrum)

stop

end

subroutine initialize_field(field, ispectrum)

common /setup/ npoints, nzone

dimension field(npoints), ispectrum(nzone)

!$OMP DO

do i=1, nzone

ispectrum(i) = 0.0

enddo

!$OMP END DO NOWAIT

!$OMP DO

do i=1, npoints

field(i) = 0.0

enddo

!$OMP END DO NOWAIT

!$OMP SINGLE

field(npoints/4) = 1.0

!$OMP END SINGLE

return

end

subroutine compute_spectrum(field, ispectrum)

common /setup/ npoints, nzone

dimension field(npoints), ispectrum(nzone)

!$OMP DO

do i= 1, npoints

index = field(i)*nzone + 1

!$OMP ATOMIC

ispectrum(index) = ispectrum(index) + i

enddo

!$OMP END DO NOWAIT

return

end

Figure 4: A more complicated example.

OpenMP: A Standard API for Shared Memory Programming 13

Within the parallel region we call initialize field() to initialize the
field and ispectrum arrays. Here we have an example of orphaning of the
DO directive. With the X3H5 directives we would have to move these loops
up to the main program so they could be lexically visible within the PARAL-
LEL directive. Clearly that restriction makes it di�cult to write good modular
parallel programs. We use the NOWAIT clause on the END DO directives to
eliminate the implicit barrier there. Finally, we use the SINGLE directive when
we initialize a single internal field point. The END SINGLE directive also can
take a NOWAIT clause but to guarantee correctness we need to synchronize
here.

The field gets computed in compute field. This could be any parallel
Laplacian solver, but in the interest of brevity we don't include it here. With the
�eld computed we are ready to compute the spectrum. To compute the spectrum
we histogram the �eld values using the ATOMIC directive to eliminate a race
condition in the updates to ispectrum. The END DO here has a NOWAIT
because the parallel region ends after compute spectrum() and there is an
implied barrier when the threads join.

5 OpenMP Design Objective

OpenMP was designed to be a exible standard, easily implemented across
di�erent platforms. As mentioned above, the standard is comprised of four
distinct parts: control structures, data environment, synchronization, and run
time library. In the following sections we briey describe the design objectives
for each of these.

5.1 Control Structures

OpenMP strives for a minimalist set of control structures. Experience has in-
dicated that only a few control structures are truly necessary for writing most
parallel applications. For example, in the Silicon Graphics DOACROSS model,
the only control structure is the DOACROSS directive, yet this is arguably the
most widely used shared memory programming model for scienti�c computing.
Many of the control structures provided by X3H5 can be trivially programmed
in OpenMP with no performance penalty. OpenMP includes control structures
only in those instances where a compiler can provide both functionality and
performance over what a user could reasonably program.

The examples above used only three control structures: PARALLEL, DO
and SINGLE. Clearly the compiler adds functionality in PARALLEL and DO
directives. For SINGLE, the compiler adds performance by allowing the �rst
thread reaching the SINGLE directive to execute the the code. This is nontrivial
for a user to program.

OpenMP: A Standard API for Shared Memory Programming 14

5.2 Data Environment

Each process has associated with it a unique data environment that provides
a context for execution. The initial process (i.e. at program start up) has
associated with it an initial data environment that exists for the duration of
the program. New data environments are constructed only for new processes
created during program execution. The objects comprising a data environment
may have one of three basic attributes: SHARED, PRIVATE, or REDUCTION.

The concept of REDUCTION as an attribute is new in OpenMP. Reduction
operations are important to many applications and the REDUCTION attribute
allows these to be e�ciently implemented by the compiler. This is especially
important on cache based systems where the compiler can take care to eliminate
any false sharing. On large scale SSMP architectures the compiler also may
choose to implement tree-based reductions for even better performance.

OpenMP has a very rich data environment. In addition to the REDUCTION
attribute, OpenMP allows PRIVATE initialization with FIRSTPRIVATE and
COPYIN, and some limited PRIVATE persistence with LASTPRIVATE. None
of these features exist in X3H5 but experience has indicated a real need for
them.

Global objects can be made PRIVATE with the THREADPRIVATE (in
Fortran) directive. In the interest of performance, OpenMP implements a \p-
copy" model for privatizing global objects. In other words, THREADPRIVATE
will create p copies of the global object, one for each of the p members in the
team executing the parallel region. Often, however, it is desirable either from
memory constraints or for algorithmic reasons to privatize only certain elements
from a compound global object. In either X3H5 or the DOACROSS model this
would require splitting the compound object. This can be a tedious and error
prone process, greatly adding to the programming e�ort required in parallelizing
existing software. OpenMP solves this problem by allowing individual elements
of a compound global object to appear in a PRIVATE list.

5.3 Synchronization

There are two types of synchronization, implicit and explicit. Implicit synchro-
nization points exist at the beginning and end of PARALLEL constructs, and
at the end of all other control constructs (i.e. DO, SINGLE, MASTER and
ORDERED). In the case of DO and SINGLE, the implicit synchronization can
be removed with the NOWAIT clause.

Explicit synchronization is speci�ed by the user to manage order or data
dependencies. Synchronization is a form of interprocess communication and as
such can greatly impact program performance. In general, best performance is
achieved by minimizing the synchronization requirements (explicit and implicit)
of a program. For this reason OpenMP provides a rich set of synchronization fea-
tures so developers can best tune the synchronization in an application. We saw

OpenMP: A Standard API for Shared Memory Programming 15

an example using the ATOMIC directive. This feature that allows the compiler
to take advantage of available hardware for implementing atomic updates to a
variable. OpenMP also provides a FLUSH directive for creating more complex
synchronization constructs such as point-to-point synchronization. The implicit
barriers in the energy spectrum example could be eliminated and replaced by
point-to-point synchronization for the ultimate in performance.

All the OpenMP synchronization directives may be orphaned. As discussed
earlier, this is critically important for implementing coarse grained parallel al-
gorithms.

5.4 Runtime Library and Environment Variables

In addition to the directive set described, OpenMP provides a callable runtime
library (RTL) and accompanying environment variables. The RTL includes
query functions, runtime functions and lock functions. The runtime functions
allow an application to specify the mode in which to run. An application de-
veloper may wish to maximize throughput performance of the system, rather
than time to completion. In such cases, the developer may tell the system to
dynamically set the number of processes used to execute parallel regions. This
can have a dramatic e�ect on the throughput performance of a system with only
a minimal impact on the time to completion for a program.

The runtime functions also allow a developer to specify when to enable nested
parallelism. Enabling nested parallelism allows the system act accordingly when
it encounters a nested PARALLEL construct. On the other hand, by disabling
nested parallelism a developer can write a parallel library that will perform in
an easily predictable fashion whether encountered dynamically from within or
outside a parallel region.

OpenMP also provides a conditional compilation facility both through CPP
and with a built in sentinel. This allows calls to the runtime library to be
protected as compiler directives, so OpenMP code can be compiled on non-
OpenMP systems without linking in a stub library or using some other awkward
workaround.

OpenMP provides standard environment variables to accompany the RTL
functions where it makes sense. This again is important to application devel-
opers who, in addition to creating portable applications also need a portable
runtime environment. A standard set of environment variables greatly simpli-
�es the start up scripts for portable applications.

6 What does this mean to me?

If you are a software developer, scientist or engineer, in need of portability and
parallel performance, OpenMP is the answer. OpenMP will allow you to write
portable, scalable programs without abandoning the simple and intuitive shared

OpenMP: A Standard API for Shared Memory Programming 16

memory programming model. If you've already abandoned the shared memory
model in the pursuit of portability, OpenMP will allow you to return.

7 What happens next?

OpenMP is supported by a number of hardware and software vendors. We
expect support to grow.

OpenMP has been designed to be extensible. In the future we expect to add
and evolve the standard, e.g. adding nested parallelism and/or shaped arrays.
A governing body will be formed to manage OpenMP extensions in the future.

References

[1] D. E. Lenoski, W. -D. Weber, Scalable Shared-Memory Multiprocessing,
Morgan Kaufmann Publishers Inc., San Francisco, 1995.

[2] B. Leasure, ed., Parallel Processing Model for High Level Programming lan-

guages, Draft Proposed American National Standard for Information Pro-
cessing Systems, April 5, 1994.

[3] Silicon Graphics, Inc., MIPSpro Fortran77 Programmer's Guide, 1996.

[4] J. Brown, T. Elken, J. Taft, SGI POWER CHALLENGE and POWER

CHALLENGEarray in the High Throughput Environment, Silicon Graphics
Inc., 1995.

