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1 Executive summary

“Experimental mathematics” has emerged in the past 25 years or so to become
a competitive paradigm for research in the mathematical sciences. A workshop
held at the Institute for Computational and Experimental Research in Mathe-
matics (ICERM), July 21–25, 2014, explored emerging challenges of experimen-
tal mathematics in the rapidly changing era of modern computer technology.
This report summarizes the workshop findings.

So what exactly is “experimental mathematics”? While several definitions
have been offered (e.g., [8]), perhaps the most succinct definition is given in the
Borwein-Devlin book The Computer as Crucible:

Experimental mathematics is the use of a computer to run computa-
tions — sometimes no more than trial-and-error tests — to look for
patterns, to identify particular numbers and sequences, to gather
evidence in support of specific mathematical assertions that may
themselves arise by computational means, including search. [9, p. 1]

Here we should distinguish “experimental mathematics” from “computational
mathematics” and “numerical mathematics.” While there is no clear delin-
eation, the latter two terms generally encompass computational methods for
concrete applied mathematics and engineering applications, whereas “experi-
mental mathematics” usually applies more specifically to computations that
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Figure 1: Performance of the Top 500 computers: Red = #1 system; orange =
#500 system; blue = sum of #1 through #500.

advance the state of the art in mathematical research. In particular, approxi-
mations are usually not the end result, but an intermediate step in the discovery
of an exact mathematical object.

While the overall approach and philosophy of experimental mathematics has
not changed greatly in the past 25 years, its techniques, scale and sociology have
changed dramatically. New algorithms and computer implementations, scarcely
dreamed when modern experimental mathematics first arose in the 1980s, are
now widely employed. And the field has, of course, benefited immensely from
Moore’s Law and other advances in computer technology, which have magnified
raw computing power by a factor of more than 100,000 in this same time frame
— see Figure 1, which tracks the performance of the world’s 500 most powerful
supercomputers over the past twenty years. Note, strikingly, that the aggregate
performance of the 500 systems in the 1994 list was surpassed by the lowest-
ranked machine a decade later!

In the same period, the increase in speed brought by algorithmic progress
has often exceeded Moore’s law. Documented examples include linear program-
ming [22, p. 71], linear system solving [39] and integer factorization [10]. Several
areas of symbolic computation that are relevant to experimental mathemat-
ics have thus been radically transformed, due to the algorithmic progress in
polynomial system solving, polynomial factorization and the handling of linear
differential equations.

Software available to experimental mathematicians has also advanced im-
pressively. Not only are commercial products such as Maple, Mathematica and
Matlab advanced from earlier eras, but many new freely available packages are
being used [5]. These include the open-source Sage [25], numerous high-precision
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computation packages and an impressive array of software tools. Advanced vi-
sualization facilities are also widely utilized to visually explore mathematical
structures and theorems, yielding impressive insights not apparent with con-
ventional tools.

With all these tools and facilities, many new results have been published,
ranging from new formulas for mathematical constants such as π, log(n) and
ζ(n) [8] to computer-verified proofs of the Kepler conjecture [24]. Whereas it
was once considered atypical or even improper to mention computations in a
published paper, now it is commonplace. Several journals, such as Experimental
Mathematics and Mathematics of Computation are devoted almost exclusively
to mathematical research involving computations.

Yet many challenges remain as researchers press the envelope in mathemat-
ical computing. Among them are the following:

Porting and adapting codes to new platforms. The emergence of powerful,
advanced-architecture platforms, particularly those incorporating features such
as highly parallel, multi-core or many-core designs, present daunting challenges
to researchers, who must now adapt their codes to these new architectural in-
novations, or else risk being left behind in the scientific computing world. Code
adaptation will be a major challenge of the next decade or two in the field of sci-
entific computation. The field of experimental mathematics will be dependent
upon and must engage with this adaptation.

Ensuring reliability and reproducibility of computed results. Repro-
ducibility means, e.g., to ensure that the results of floating-point computations
are numerically reliable and reproducible on other platforms. In the domain of
symbolic computation, reliability is a more relevant question than reproducibil-
ity, with complications coming from undecidability issues when comparing two
different expressions to determine whether they are mathematically equivalent.
Along this line, the community has to face the reality that many less sophis-
ticated users implicitly trust the results of these tools, losing sight of the fact
that they are far from infallible. In any event, it is clear that we must build
even greater reliability into these tools. Stronger interactions with the cousin
discipline of formal proof systems should be one of the approaches to increased
reliability, but huge efficiency issues have to be addressed.

Managing the exploding scale of data. The size of datasets that users
want to handle has increased at least as fast as Moore’s Law, in many cases
because the data itself is produced by faster, larger computer systems. However,
most of the experimental mathematics algorithms now in use, both numeric and
symbolic, have a complexity that is more than linear in the size of their input.
Thus, doubling simultaneously the power of a computer and the size of its input
make it appear slower to the user. Thus algorithmic progress is necessary for
experimental mathematicians, notably in tools aiding in the quest for structure
in large numerical or symbolic datasets.

Large-scale software maintenance. The rapidly increasing size of many
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of the software tools used in the fields now means that mathematicians must
confront the challenge of large-scale software maintenance. This includes the
discipline, unfamiliar to many research mathematicians, of strict version control,
collaborative protocols for checking out and updating software, validation tests,
issues of worldwide distribution and support, and persistence of the code base.

Changing sociological and community issues. Many recently published
results are the result of long-distance, internationally distributed, Internet-based
collaborations. It is not uncommon for research ideas, computer code and work-
ing manuscripts to circulate around the globe multiple times in a single day.
Even more ambitious are efforts such as the PolyMath Project [23], whereby
a loosely-knit Internet-based team of mathematicians has addressed and, in
several cases, “solved” some key unsolved mathematical problems. Such col-
laborations are qualitatively different than research of past years, which was
mostly conducted by individual researchers working in relative isolation from
one another. But it is clear that the effective deployment of these efforts will
rely on improved tools and platforms for collaborative mathematics. There is
also arguably a need for some sort of international “clearing house” to collect,
validate and coordinate such activities.

Providing evidence-based rationales for experimental mathematics in
the classroom. Current computer-based tools are also being introduced into
mathematical education, often with very promising results, as students are able
to see mathematical concepts emerge from direct, hands-on experimentation.
Indeed, computer-based mathematics is already attracting to the field a cadre
of 21st century computer-savvy students eager to press forward with these tools.
This is not the first time that technology has promised to reinvent mathematical
education. But it is clear that the entire process of mathematics education,
from elementary to advanced levels, needs to be rethought. At the least, much
“experimentation” will be required to see which approaches really work.

2 Emerging techniques in experimental mathe-
matics

While “experimental mathematics” encompasses many techniques and method-
ologies, the specific objectives that we deal with here are (i) the process of
experimenting to discover new mathematical facts and (ii) of proving experi-
mentally discovered facts. Both aspects of experimental mathematics are the
target of newly developed or enhanced techniques and methodologies.

2.1 Algorithms

The current increase of computing power parallel to an explosion of the size of
data available demand algorithmic progress throughout computer science. In
the area of experimental mathematics, several specific issues were raised during
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the workshop.
Tools for discovering structure from a set of floating point expansions, such

as the PSLQ algorithm, the LLL algorithm and their variants, typically suffer
badly from an explosion of computational cost as the dimension of the search
space is increased. Thus more research effort is needed in the design of algo-
rithms for such purposes whose computational cost does not grow so rapidly.
Similarly, recovering a conjectured linear differential or recurrence equation from
a sequence of coefficients relies on efficient algorithms for Padé-Hermite approxi-
mants or, more generally, on structured matrices with polynomial entries, whose
complexity is still increasing too much with respect to the order of the target
equation. Improvement is clearly needed, as equations of very large orders have
been found to occur naturally in various combinatorial problems.

Tools for proofs encompass potentially all of computer algebra. The area of
identity proving in the hypergeometric context has made tremendous progress
since the pioneering work of Zeilberger and the recent years have still led to
many advances in terms of scope and efficiency. Computation with systems
of polynomial equations has also benefited both from constant implementation
effort and from improved algorithms; recent years have seen an important and
interesting activity towards specific algorithms for structured polynomial sys-
tems. Other recent advances in effective real algebraic geometry should also
benefit to applications in experimental mathematics.

Yet another direction where algorithmic development would impact exper-
imental mathematics is in the visualization of large datasets. There, progress
is likely to come from the user needs of other, much larger, communities, such
as statisticians dealing with web-size data or physicists handling experiments
involving terabytes of data.

2.2 Reproducibility

The issue of reproducibility has recently come to the fore, not just in experimen-
tal mathematics but also in the larger realm of scientific computing, as discussed
at length in an earlier ICERM workshop [26], in the First Summer School on
Experimental Methodology in computational Science Research [2] and at the
website http://recomputation.org. While no universally accepted definition
of reproducibility exists, it is a sad fact that the field of scientific computing
has never incorporated a culture of reproducibility, however one may define
the term. In particular, computational scientists typically do not keep detailed
records of their research processes, and as a result confusion has reigned when
other research teams cannot reproduce a published result, or even when the
same research team cannot reproduce its own result. Thus the enterprise of
experimental mathematics needs to adopt procedures similar to those that have
been or are being adopted in other scientific disciplines.

Numerical reproducibility has emerged as a particularly important issue,
since the scale of computations has greatly increased in recent years, particularly
with computations performed on many thousands of processors and involving
similarly large datasets. Large computations often greatly magnify the level of
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numeric error, so that numerical difficulties that were once of little import now
are large enough to alter the course of the computation or to draw into question
the overall validity of the results.

Numerical difficulties now typically come to light when only a minor change
is made to the computation, producing final results differing surprisingly from
benchmark results. For example, in a recent case reported at the workshop, a
computer program processing data from the Large Hadron Collider missed some
previously detected collisions and misclassified others, all as a result of a minor
change made to the transcendental function library, which change should only
affect the least significant bit returned in such operations [14]. Higher-precision
arithmetic may be required to ameliorate such numerical problems, or, at the
least, much more careful analysis is required.

Given the widespread usage of high-precision arithmetic in experimental
mathematics, it is clear that increased attention must be given to the question
of whether sufficient numeric precision is employed to produce reliable results.
Thus, researchers in the field need to investigate validity checks specifically tar-
geted to determining whether adequate numeric precision is being used (this
may vary inside the computation). Such considerations are particularly acute
when floating-point computations may have been employed in a computer alge-
bra system without this being known to the end-user.

2.3 Reliability of results

Although reproducibility is an important goal by itself, the ultimate objective of
computations in the field of experimental mathematics is mathematical certainty
or at least secure mathematical knowledge. In symbolic computation, various
representations are available for a single mathematical object: polynomials may
be factored or expanded, different kinds of rewriting may be applied to trigono-
metric expressions, etc., and no representation is universally better than the
others and different programs may return different forms for the same answer.
Another source of non-reproducibility is the use of randomized algorithms whose
execution may vary from one execution to the next. In this context, reliability
(mathematical correctness of the result) is more relevant than reproducibility,
even though the lack of reproducibility makes testing and debugging software
harder.

A fundamental issue in this area is that for important classes of mathemat-
ical expressions, recognizing equality is undecidable. This is also behind the
difficulty in comparing results obtained by different computer algebra systems,
or even by different versions of the same one. Several approaches help mitigate
this problem. For specialists of computer algebra, the natural technique when
faced with a computation is to define precisely an algebraic structure where
equality is decidable (e.g., rational functions over the rationals, or algebraic ex-
tensions) and where all the computation will take place. An approach taken by
Zeilberger’s algorithm and variants [38] is to provide a certificate (an identity
between rational functions) together with their results. Currently, the best way
to gain confidence in a result is through formal proofs. For instance, tools for
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inequalities exist in the Flyspeck project [24]; the recent complete proof of the
Feit-Thompson theorem in Coq [20] has led to libraries of formal lemmas for
several parts of algebra. Thus formal proofs will become more and more useful
here. Additional work is needed to make them faster and they are unlikely to
be broadly accessible within the next few years.

Thus for most users, the best advice currently is to learn to distrust the
results of computer algebra systems and get used to performing a few sanity
checks on their results. Here are a few examples of checks that are now routine
in the field:

– Identities involving parameters are often tested numerically at one or more
appropriate evaluation points.

– High precision numerical calculations leading to integers, for example
using an FFT-convolution algorithm in a multiplication operation, are
checked to see that they produce values that are very close to integers.

– When new formulas are found using the PSLQ integer relation algorithm
[8, 5], it is common practice to track the size of the reduced vector as
the algorithm proceeds, and then note the magnitude of the drop in this
value when a tentative relation is discovered. If this drop is, say, 50 or
more orders of magnitude, then this indicates that the tentative relation
is very likely a real mathematical relation (although rigorous proof is still
required).

– When the output itself is very large and no other simple check is available,
e.g. in the very high precision computation of mathematical constants such
as π, e, log 2, etc., it is now customary to check the results by a separate
independent computation, say using a different algorithm.

The recently initiated Digital Repository of Mathematical Formulae (DRMF)
[12] project ties specific LaTeX character sequences to well-defined mathemat-
ical objects. The DRMF, like the Digital Library of Mathematical Functions
(DLMF) [11], is being developed at the National Institute of Standards and
Technology (NIST). One workshop participant reported work in the direction
of linking formulas in the DLMF to machine-checkable proofs, thus adding an-
other level of validation to the results.

2.4 Standards

Along this line, reliability concerns are an issue even for explorations that involve
large public datasets — the possibility that an error has been made in producing
the data, or that an error has occurred when accessing the data, cannot be
ruled out and must be guarded against. Large datasets that include the specific
algorithms used to generate the data are particularly useful in the regard, as
they permit one to independently reconstruct the data if a question arises as to
the accuracy of some item in the dataset. Neil Sloane’s Online Encyclopedia of
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Integer Sequences [34] is an excellent model for how this can be done effectively
over a period of decades.

In most cases however, the community is very far from having adopted a
culture of reproducibility and reliability at this level. One step that would
greatly help foster such a culture in the field is to establish some standard
practices:

– Field-specific standards for reports on computational experiments (and
insisting that researchers report hunts that found nothing or tests that
failed). Even simple data from mathematical experiments are useful but
relatively rarely available. When they exist, they generally occur as type-
set tables at the end of mathematical articles. Even more exceptional and
laudable is the access to files with actual data, such as the supplementary
material with several of M. Kauer’s publications1, or the software that
accompanies many of D. Zeilberger’s articles;

– Standards for test suites of mathematical software. Such test suites exist
for many different areas but with no coherence; more generally, no infor-
mation is available concerning the test suites that has been employed;

– Standards for granting access to experimental datasets;

– Standards for reporting experiments that involve floating-point arithmetic:
e.g., what is the claimed level of numerical reliability (i.e., how many
digits), and what tests have been made to back up this claim?

The experimental mathematics community is currently very far from agree-
ing on and adopting such standards. As first steps, researchers should make an
habit of giving access to files related to their published research, even if they
are only accessible or readable by a computer for a couple of years. We have
to start somewhere, so perhaps some individual research groups can adopt one
or more of these practices and then report their experience at future workshops
and conferences.

3 Computer systems and software

As mentioned above, the computational power and designs of computer systems
used in the field have changed dramatically over the past 25 years. Just as
importantly, the range of software available to experimental mathematicians
has also advanced impressively, opening new challenges ahead for the field of
experimental mathematics.

1http://www.kauers.de/publications.html
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3.1 Computational program, software packages, and li-
braries

Not only are commercial products such as Maple, Mathematica and Matlab ad-
vanced from earlier eras, but many new freely available packages are being used.
These include the open-source Sage, as well as numerous high-level computa-
tional libraries such as SuperLU, LAPACK, PETSc and others. In addition
there exists an impressive array of individually-written software tools based
upon this collection of libraries. Modern software projects often incorporate a
complex combination of many libraries and packages, and this combinatorial
explosion can make it more difficult to examine, reproduce, and extend results
obtained using them. Higher level environments, like Sage, and hierarchical
library interfaces are an attempt to control this complexity.

Another important component of present and future experimental mathe-
matics software are packages that support certain types of computation, such
as high-precision computation, linear system solution or statistical analysis, or
which implement a specific algorithm such as PSLQ or the tanh-sinh quadrature
algorithm.

Some specific software packages that have proven to be particularly useful
in experimental mathematics include the following:

• Computer algebra packages: Mathematica, Maple, Magma and Sage [25].

• Statistics and machine learning: R [35].

• Linear algebra: Matlab, LAPACK [17], LINPACK [18] and SuperLU (for
sparse direct matrix computations) [32].

• High-precision and arbitrary precision libraries: ARPREC [13], GMP [16],
MPFR [16] and QD [15].

• Other commonly used libraries: ADCIRC (circulation and transport),
PETSc (for systems modeled by partial differential equations) [29], FGb
(for Gröbner bases) and LattE (for computations with polytopes).

• Experimental math tools incorporating specific algorithms: Implemen-
tations of algorithms such as PSLQ (for integer relation detection) and
tanh-sinh quadrature (for high-precision numerical integration) are often
included with high-precision arithmetic packages such as ARPREC and
QD. Both Mathematica and Maple include commands for Padé approxi-
mants (for finding rational functions approximations) and for integer rela-
tion detection (with applications e.g., to finding a polynomial satisfied by
a floating-point value), as well as options for adaptive doubly exponential
integration. Maple also has a command for Padé-Hermite approximants
(for finding linear dependencies with polynomial coefficients among power
series) with applications to the discovery of linear differential or recur-
rence equations. There are numerous other examples that users of these
packages may or may not be aware of.
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Advanced visualization facilities are also widely utilized to visually explore
mathematical structures and theorems, yielding impressive insights not appar-
ent with conventional tools. For example, some intriguing results were recently
obtained on the normality of real numbers by representing the base-b expan-
sions of various mathematical constants visually as a “random” walk [3].2 In
this workshop, a talk on non-convex feasibility demonstrated the usefulness of
visualizing the convergence of projection and reflection algorithms for this prob-
lem [4]. Tools for generation, description, and manipulation of advanced graphic
output are also lacking.

Along this line, we should mention the recently organized effort to produce a
Digital Mathematical Library (DML), which would encompass not just formulas
but, much more broadly, a knowledge-based library of mathematical concepts,
theorems and proofs. For details, see [30].

3.2 Best practices for software development

Researchers in the field who are developing large software tools now must adopt
practices of software engineering, as appropriate, to manage their codes. “Best
practices” in this area include software tools for version control, collaborative
protocols for checking out and updating software, validation tests, issues of
worldwide distribution and support, and persistence of the code base. Equally
important is the development of strong programming interfaces (APIs) that
allow interoperability between libraries, extension to new capabilities, and au-
tomatic generation of code for specific tasks or wrappers for new languages.

Along this line, the long-term persistence of experimental mathematical soft-
ware is important. Persistence is important not just for software reuse, but also
for reproducibility, in case another team (or even the same team) of researchers
wishes to reconstruct earlier published results. Thus the experimental math-
ematics community, like others, must develop permanent repositories for soft-
ware and encourage researchers to place their software there. Along this line,
for decades, we have told our students and research assistants to document their
code; this time we really mean it!

Another area that perhaps is unfamiliar to many research mathematicians,
but which will increasingly be essential in the future, is to employ advanced
database structures and data management facilities to store and manage data
(including managing access to this data by a worldwide community of researchers).
Some experimental mathematics projects have produced multi-Tbytes of data;
these datasets will only increase in size in future research.

3.3 Programming multi-core and many-core computing
systems

The emergence of powerful new computing platforms, particularly the massively
parallel multi-core or many-core systems, presents daunting challenges to both

2A 108Gb image of a walk on 200 billion bits of Pi is hosted by Gigapan and is available
through http://walks.carma.newcastle.edu.au/.
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researchers and commercial vendors, who must now adapt their codes to these
new architectural innovations, or else risk being left behind in the scientific
computing world. This will be a major challenge of the next decade in the field.

Emerging techniques in experimental mathematics must go hand-in-hand
with system developments. Future algorithms must meet the concurrency of
multi- and many-core platforms while preserving requirements such as accuracy
and reproducibility. The multithreading environment of these platforms may
be a major impediment to the latter requirements. Recently, graphics process-
ing units and similar many-core designs have been a fundamental driver and
testing platform for many of the above mentioned challenges. Still, to succeed
in a long term, it is clear that the experimental mathematics community needs
to embrace many-core technology, beyond any particular vendor-specific archi-
tecture. Doing so will also create dependability and help meet interoperability
requirements for the software libraries.

4 Communities and collaborations

As mentioned above, experimental mathematics can be thought of as being as
much a philosophy as a discipline. The field certainly encompasses computer-
assisted mathematics, but it also intersects with the realm of computational and
numerical mathematics (i.e., techniques mostly applied to other scientific and
engineering disciplines). Clearly there is overlap between these communities,
and both can learn from the other. Experimental mathematics also has much
to offer current thinking on the nature of Mathematics [6].

4.1 Definition of a diverse community

Even within the field of experimental mathematics per se, there is a large inter-
national, multi-discipline community that embrace the discipline from different
points of view. Specifically, some approach the field from the vantage of pure
mathematics; some approach it from the computer science perspective; some
approach it from within symbolic computing; others approach it from the ed-
ucation angle; yet others approach it from the broader arena of software tools
and databases for scientific research. It is clear that each of these overlapping
but distinct communities will need to work in concert.

Here is a list of some of the communities that experimental mathematics
may interact with in their work:

• Traditional mathematical fields. Experimental work has traditionally fo-
cused on fields such as combinatorics, computational number theory and
group theory.

• Non-traditional mathematical fields. New applications include computa-
tional geometry and topology.
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• Computer science. Many working in experimental mathematics already
come from computer science backgrounds or are familiar with theoretical
computer science.

• Computational science. These researchers mostly work in various “ap-
plied” disciplines, where work centers on issues of large-scale, highly par-
allel scientific computation.

• Probability and statistics. The areas are increasingly key to much compu-
tational research, both theoretical and practical.

• Physics. This includes related disciplines such as astronomy, astrophysics
and cosmology.

• Chemistry. Computational chemistry and materials science increasingly
involve rather sophisticated mathematics and computation.

• Engineering. Many fields of engineering now involve sophisticated math-
ematical algorithms and large-scale computations.

• Biology. This includes biostatistics, namely statistical methods specifically
applied to genomics and biomedicine.

• Medicine and biochemistry. This includes advanced geometric imaging
and visualization techniques, as well as “data mining” of biomedical data.

• Social science. Economics, psychology, sociology, linguistics, anthropol-
ogy, history all now include significant mathematical computational re-
search.

• Humanities. Considerable interest has arisen lately in “digital humani-
ties,” which is opening up new areas of research, for example in text anal-
ysis to identify the authors of texts or, more broadly, to quantitatively
analyze cultural trends such as the evolution of grammar, the adoption of
technology and various historical trends. See [21] for details.

• Finance and investment. Recently there has been an explosion of activ-
ity in this arena, with many top mathematicians and computer scientists
working in the field.

The breadth of the disciplines in the list above clearly underscores a major
challenge to the field: How can researchers learn at least a modicum of each of
these fields, so that one can be moderately conversant with these other commu-
nities and explore potential collaborations? Along this line, it is important to
keep in mind a related challenge, namely to foster respect for these other disci-
plines and to expect respect in return. All too often, promising collaborations
of this sort founder on the problems of this sort.

We should add a word caution here that in all these fields, mathematicians
have an obligation to confront the unsound usage of mathematics. For example,
the overselling of quant-based investing before the great economic recession of
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2007–08 has led to financial products and even peer-reviewed papers that are, in
many cases, mathematically and/or statistically unsound [7]. The questionable
application of statistical methods in the social sciences has also recently come
under harsh criticism [40].

4.2 Tools to foster collaboration

The Internet has certainly facilitated many of these collaborations. When many
of those attending the conference began their careers, mathematics, even exper-
imental mathematics (such as it was back then), research papers typically were
authored alone, or perhaps by two or three authors at the same institution.
Nowadays none of us think twice about writing a paper with multiple collabo-
rators in several time zones or continents.

Two of the workshop organizers, for instance, reported that they have col-
laborated for over 30 years, jointly writing dozens of papers, even though they
have never been in the same country at the time, let alone the same institution,
and for at least the past six years have been on different continents. They ex-
change computational research and manuscript drafts via email and Dropbox,
and communicate mostly by video Skype. They did not meet in person for eight
years after their collaboration began, and even now, only occasionally interact
in person. Numerous others at the workshop reported similar changes in how
they interact with colleagues.

A wide array of software tools and online facilities are employed by re-
searchers in the field to support their multi-institution and multi-national col-
laboration. Some of the more common items include those listed in [5] and:

• Commercial communication tools: Skype or Google hangouts, Access Grid
systems, etc. Most of these now also include facilities for “chat” and multi-
person video conferencing. Some of these tools, such as Xoom and Face-
Time, are restricted to specific vendors and/or platforms, complicating
their wider applicability.

• Data sharing tools (high bandwidth is important): Email, Globus toolkit,
Google docs, Dropbox.

• Software sharing tools: Git and GitHub [19], SVN.

• Mathematical community online resources and tools: Mathworld [28],
PolyMath [23], Math Overflow, PlanetMath [31], DLMF [11], DRMF [12],
OEIS [34], mathLibre [27], swMATH [33] and arXiv, and various high-
profile blogs such as those by Gowers and Tao.

• Data Management tools: MySQL.

However, there is clear need for improved tools to foster mathematical col-
laborations. For example, one can envision an “interactive whiteboard” facility,
so two researchers at different institutions can work on a mathematical example
as if they were standing side-by-side. Some discussions with computer scientists
and engineers may be in order here to design a practical yet effective system.
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4.3 Best practices and standards

Given the increasing impact of experimental mathematics, some at the workshop
recommended that the field establish some “best practices” and other guidance,
both for those working in experimental mathematics, and for those using their
results. This would be particularly valuable given the increasing role that ex-
perimental mathematicians are playing as participants in larger collaborations:
for example detailed Maple computations played a key role in the Polymath 8,
project on “Bounded gaps between primes [23]. An analogy might be drawn
with “Technology readiness levels, a set of criteria used in defence and other
applications to assess the maturity of emerging technologies [37]

• Career advice for young researchers intending to pursue professional work
in experimental mathematics — recommended course background, best
ways to meet others in the field, how to do real publishable research, etc.

• College-level education: Recommended curricula for courses in experimen-
tal mathematics; recommended textbooks, etc.

• Attracting students (high school and college) to experimental mathemat-
ics: Successful outreach methods, motivating students to learn, etc.

• Instilling general “experimental” skills: Building intuition, knowing how
to check that one is wrong, right (or “not-right,” “not-wrong’).

• Professional practice for the deployment of experimental mathematics:
reproducibility, credit, attribution and provenance of experimental results

• Setting expectations so that collaborators working with experimental math-
ematics experts had a realistic understanding of the power and limitations
of experimental techniques

Along this line, several at the workshop hoped that the U.S. National Insti-
tute for Standards and Technology (NIST) might play a role to further develop
such practices and standards.

This would build on the strong role that NIST has already played in the area
of special functions, where NIST’s activities go back at least to the Abramowitz-
Stegun Handbook of Mathematical Functions in 1964 [1]. More recently, the
NIST Digital Library of Mathematical Functions (http://dlmf.nist.gov) [11]
and the NIST Digital Repository of Mathematical Formulae (http://gw32.
iu.xsede.org/index.php) [12] continue this tradition. NIST has also been
active in the development of algorithms and mathematical software for special
functions, with numerous journal publications in the field.

If an organization such as NIST is to take this role, numerous questions
arise, such as what resources and types of standards would be established, what
participation by others in the mathematical community would be required, what
scale of software infrastructure would be required, what specific projects should
be embarked upon, and, of course, how any work in this area will be paid for.
Clearly this needs some additional discussion. Several at the workshop expressed
interest in participating in such discussions, perhaps at a future workshop.
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5 Conclusion

In summary, the workshop participants agreed that there is considerable poten-
tial for near- and long-term progress in the field, but that significant challenges
also lie ahead. Challenges include (a) instilling a culture of reproducibility and
reliability in computational experiments, (b) developing new algorithms and
software appropriate for execution on highly-parallel, multi-core and many-core
platforms, (c) adapting and porting existing software to these platforms, (d)
fostering collaboration and interactions with numerous other allied disciplines
(especially including the larger high-performance scientific computing commu-
nity), and (e) providing outreach and career advice to prospective researchers.

More generally, there are high-level questions to be considered in the field.
For example, much of the published work to date in experimental mathematics
has focused on a few fields that are particularly amenable to computational
exploration — combinatorics, classical number theory, analytic number theory,
geometry, groups, rings and fields, etc. How can we expand the scope of ques-
tions that have been examined with these methodologies?

The discussions on education raised several interesting questions. Can we
foster greater interest in the experimental mathematics field by promoting the
field as a way to build practical computer literacy and computational science
skills? After all, most of the students who we may teach about experimental
mathematics will end up in other fields, e.g., science, engineering, technology
and finance. Can we craft or stimulate development of instructional material
targeted to such persons?

Similarly, the list of allied disciplines above raises the question of whether
there are in fact other disciplines, perhaps distinct from some of the groups that
experimental mathematicians have traditionally collaborated with, which have
the potential for particularly productive interactions?

All of this also raises the question of how all this research work can be
paid for. A significant portion of published research in the field of mathematics
(pure and applied) not been specifically funded — it has been done by academic
mathematicians or others as they have time, alongside teaching or other formal
duties. But some of the work described above, particularly that which involves
substantial software development and maintenance, cannot be done so infor-
mally. Nor does a royalty model work, as it has for traditional publications,
since the development costs are too great and the academic reward too small.

Thus it is clear that the field of experimental mathematics needs to work
better with governmental funding agencies to find ways to provide this funding.
Perhaps this can more easily be done if projects can be done in collaboration
with others, particularly in computer science or other fields that heretofore have
been somewhat more generously funded.
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