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Overview

Hydraulic tomography (underground reservoir imaging) and
the inverse Born series. Joint work with F. Guevara
Vasquez.[1]

Polycrystalline materials (plastics) and understanding grain
growth processes. Joint work with Y. Epshteyn.

Imaging with noise - (stealth imaging!) Joint work with F.
Guevara Vasquez.
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Hydraulic Tomography

Hydraulic Tomography: Imaging or observing an underground
reservoir or aquifer using indirect measurements.

Uses: Oil prospection, natural gas prospection, fracking, and
hopefully some environmentally friendly situations too!
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Hydraulic tomography
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Source term φi

Measure pressure term
∫
φj ∗ ui
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Hydraulic Tomography

Partial differential equations give us a connection between what we
can measure and what we would like to know. In this case
Physical law given by PDE:

S
∂uj
∂t

= ∇ · (σ∇uj)− φj for x ∈ Ω, t ∈ R

uj(x, 0) = Initial Condition for x ∈ Ω.

Measurement:

Mi ,j(t) =

∫

Ω
φj(x, t) ∗t ui (x, t)dx

Unknown: S(x , y , z) and σ(x , y , z).
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Hydraulic Tomography

PDE:

S
∂u

∂t
= ∇ · (σ∇ui )− φi for x ∈ Ω, t ∈ R

This actually means

S(x , y , z)
∂u(x , y , z , t)

∂t
=∂x (σ(x , y , z)∂xu(x , y , z , t))

+ ∂y (σ(x , y , z)∂yu(x , y , z , t))

+ ∂z (σ(x , y , z)∂zu(x , y , z , t))− φ(x , y , z)

for (x , y , z) ∈ Ω, t ∈ R.

Gross right? That’s why we use the triangles ∇.
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Hydraulic Tomography

PDE:
S(∂tui ) = ∇ · (σ∇ui )− φi

So our goal is to determine the functions S(x , y , z) and σ(x , y , z)
from the measurements

Mi ,j(t) =

∫

Ω
φj(x, t) ∗t ui (x, t)dx

with the physical law given by the PDE (which connects ui with
the unknown functions.)

How?
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The Born Series

Remember your favorite topic... series? Here is a real world
application of them!

We have some data d (those measurements Mi ,j).

We have some unknown function information h (info about S
and σ).

We can prove the data d is related to the unknown
information h through a series called the forward Born series:

d =
∞∑

n=1

an(h⊗n) where an ∼
f (n)(0)

n!
.

Think of this as a Taylor series of functions.
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The Inverse Born Series

To get a reconstruction, we guess that the function information h
can be built from a series of the data d in the form

h =
∞∑

n=1

bn(d⊗n).

where we know what the bn’s are. In the real world:

h ≈
N∑

n=1

bn(d⊗n),

much like a Taylor polynomial of degree N.
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Hydraulic Tomography

This method of reconstruction works to some extent:

We know the error we make during reconstruction.

Only works for certain function information h and data sets d.
In particular the “size” of the function information ‖h‖ ≤ 1/µ
where µ is a known number.

The smallness condition comes from

∞∑

n=1

rn =
1

1− r

if and only if |r | < 1 : Geometric Series.
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Hydraulic Tomography True Functions

Conductivity σ − 1 Storage Coefficient S
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Check it out... contour plots... remember them?
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Hydraulic Tomography Reconstructions

Conductivity σ − 1 Storage Coefficient S
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Reconstructions using inverse Born series of order 5 (much like an
inverse Taylor polynomial of degree 5).

Patrick Bardsley “When am I ever going to use this?”



References

Hydraulic Tomography

Using this method we can recover an estimate of how large an
aquifer is, and estimate how much of a certain substance (gas, oil,
water) it contains.

Tools from Math 1320:

Partial derivatives

Integrals

Series (Taylor series ideas)

Geometric series

Contour plots

Multivariable functions u(x , y , z , t), σ(x , y , z), etc.
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Polycrystalline Grain Growth

Materials science: Understanding growth and formation of
certain types of polymers, plastics, polycrystalline materials from a
mathematical perspective.

Uses: Predicting material properties such as shear/tensile strength
from understanding how the material forms.
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Polycrystalline Grain Growth

Materials such as plastics have a microscopic polycrystalline grain
structure. During formation these grains grow and shrink according
to known empirical laws i.e. big grains eat little grains.

http://www.youtube.com/watch?v=J_2FdkRqmCA
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Polycrystalline Grain Growth

Another empirical law says that grains grow according to how their
molecular lattice structures are aligned.

Image source: Barmak et al. [2]
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Polycrystalline Grain Growth

People (one of my project advisors for example) have developed
theory which describes how the grains grow in a probabalistic
sense.

Grain structures with a favorable lattice orientation grow.

Grain structures with an unfavorable lattice orientation shrink.

The probability of finding a particular grain structure lattice
orientation ρ(α, t) changes in a predictable way over time.

∂tρ = ∂α
(
λ∂αρ+ ρψ′

)

where ψ measures the favorability of a particular lattice orientation.
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Polycrystalline Grain Growth

The location of a “particle” represents the particular lattice
orientation at that location. This lattice orientation changes (so
the particle changes location) as the polymer develops in time.

Patrick Bardsley “When am I ever going to use this?”



References

Polycrystalline Grain Growth

The probability of a particular lattice orientation as time evolves.
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Polycrystalline Grain Growth

Benefit: knowing which lattice structures are more likely than
others, we can predict how the material develops over time. This
allows us to predict material properties such as strength, weight,
etc.

Tools from Math 1320:

Derivatives, partial derivatives

Probability - requires integrals to use effectively

Multivariable functions ρ(α, t)
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Spoiler Alert!
The Maclaurin series of x sin(x) looks like this:

x

(
x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
= x2 − x4

3!
+

x6

5!
− x8

7!
+ · · ·

I wonder what the Maclaurin series are for x cos(x) and xex?
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Imaging With Noise

Imaging with noise: Using noisy sources (random signals such as
white noise) we hope to image objects in a medium using recorded
echoes and data processing.

Uses: Developing more efficient medical imaging devices,
earthquake detection, seismic imaging, stealth applications.
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Array Imaging

The setup: Send out a signal - wait and record echoes - interpret
location of reflector based on when echoes are received.

Image source: Borcea et al. [3]
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The Math Behind Imaging: Waves

Mathematically we describe movement of signal (sound signal) by
how the acoustic pressure u(x , y , z , t) at a location (x , y , z)
changes over time t.
The Wave Equation:

1

c2
∂ttu − ∂xxu − ∂yyu − ∂zzu = F

1

c2
∂ttu −∆u = F

where c is the speed of (sound) waves in the medium (bodily
tissue), and F is the source of waves (oscillations of ultrasound
transducer).
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Measurements

Acoustic pressure u at array without reflector:

u(xr , t) =
1

2π

∫
Ĝ (xr , xs , ω)F̂ (ω)e iωtdω

Acoustic pressure u at array with reflector with intensity ρ:

u(xr , t) ≈ 1

2π

∫
Ĝ (xr , xs , ω)F̂ (ω)e iωtdω+

1

2π

∫
Ĝ (xr , y∗, ω)Ĝ (y∗, xs , ω)ρF̂ (ω)e iωtdω

The Born Approximation
(this is a linear approximation!)
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Imaging With Noise

This is well understood when we know exactly the signal we
send.

What about if we send a random signal like white noise?
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Cross-correlations

My work revolves around cross-correlations of noisy signals.

Using a noisy (literally noisy) signal F which is a stochastic process
(means random signal) we record a random signal (stochastic
process) u(xr , t). Compute cross-correlations (averages):

M(τ) =
1

T

∫ T

0
F̄ (t)u(xr , t + τ)dt.

This is the average value of the single variable function
F̄ (t)u(xr , t + τ) over the interval [0,T ].

Patrick Bardsley “When am I ever going to use this?”



References

Migration

Received signal u(xr , t):

Cross-correlated signal M(τ):

Evaluating M(τ) at the correct times we can find where a reflector
may be located.
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Migration

True reflector location Reconstructed image
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Imaging With Noise

Resolution Analysis: We study imaging a “point” reflector because
it lets us determine how much we can trust imaging techniques in
the real world (i.e. ultrasound). Useful in noninvasive medical
imaging, and nondestructive testing of materials.

Tools from Math 1320:

Partial derivatives

Linear approximations

Multivariable functions

Average value of functions
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“When am I ever going to use this?”

Goal: Encourage friends, family, and children that math is
extremely useful and necessary to solve real world problems.
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Thank you!

Thank you for a great
semester- good luck with all
your finals and of course...

HAGS!

Patrick Bardsley “When am I ever going to use this?”



References

[1] P. Bardsley and F. Guevara Vasquez. Restarted inverse Born
series for the Schrödinger problem with discrete internal
measurements. Inverse Problems, 30(4):045014, 2014. doi:
10.1088/0266-5611/30/4/045014. URL
http://stacks.iop.org/0266-5611/30/i=4/a=045014.

[2] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn,
D. Kinderlehrer, R. Sharp, and S. Ta’asan. An entropy based
theory of the grain boundary character distribution. Discrete
Contin. Dyn. Syst., 30(2):427–454, 2011. ISSN 1078-0947.
doi: 10.3934/dcds.2011.30.427. URL
http://dx.doi.org/10.3934/dcds.2011.30.427.

[3] L. Borcea, G. Papanicolaou, and C. Tsogka. Theory and
applications of time reversal and interferometric imaging.
Inverse Problems, 19(6):S139–S164, 2003. ISSN 0266-5611.
doi: 10.1088/0266-5611/19/6/058. URL
http://dx.doi.org/10.1088/0266-5611/19/6/058.
Special section on imaging.

Patrick Bardsley “When am I ever going to use this?”

http://stacks.iop.org/0266-5611/30/i=4/a=045014
http://dx.doi.org/10.3934/dcds.2011.30.427
http://dx.doi.org/10.1088/0266-5611/19/6/058

