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Weather forecasting

The temperature T (t) in a given area (SLC) can be described as

dT

dt
= f (t,T ,wind, cloud cover, humidity, . . .)

where f is some function of all of those variables. As a simple
example consider

dT

dt
= 6 sin

(
1

5
t
11
10

)
− 0.001t, T (0) = 40
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[
6 sin
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− 0.001t

]
dt

∫
dT =

∫ [
6 sin

(
1

5
t
11
10

)
− 0.001t

]
dt

T (t) =

∫ [
6 sin

(
1

5
t
11
10

)
− 0.001t

]
dt + C

Problem: We can’t integrate this! But... we could use an
approximation of this function, which we find from a linearization.
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Linearized differential equation

Using the linearization formula

f (t) ≈ f (a) + f ′(a)(t − a) = L(t)

we find the linearization L(t) of the function

f (t) = 6 sin

(
1

5
t
11
10

)
− 0.001t.

Then we could use the approximation

dT

dt
= f (t) ≈ L(t)

and we can solve the approximate differential equation to find

T (t) =

∫
f (t)dt + C ≈

∫
L(t)dt + C .
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The linearization near time equal to zero of

f (t) = 6 sin

(
1

5
t
11
10

)
− 0.001t.

is given by
L(t) = f (0) + f ′(0)(t) = −0.001t.
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So solving the linearized differential equation we have

dT

dt
= −0.001t

dT = −0.001tdt

∫
dT =

∫
−0.001tdt + C

T (t) = −0.001
t2

2
+ C

T (t) = −0.0005t2 + C

and using the fact that T (0) = 40 we find a temperature model

T (t) = −0.0005t2 + 40.
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Why can’t we trust the 7-day forecast?

This linearized approximation is great for short times (within 2
hours in this case).
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Why can’t we trust the 7-day forecast?

The linearized approximation breaks down as we move further away
from time zero. So in general forecasting is hard for long periods
of time because of the approximations to the model.
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Optimal design of a climbing cam

The curved shape of a climbing cam

is described by a sector of
what is known as a logarithmic spiral r = eµθ where r is the radius
on the spiral, θ is the angle in radians, and µ describes how fast
the spiral opens up.
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If this camming unit is placed inside a parallel crack we can look at
a force diagram to understand what keeps climbers alive.

Here the
contact angle is what is most important for our purposes since it
helps describe how much force we can expect on the center pin of
the cam for a given load T .
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The angle a is given by tan(a) = y/x where x describes the
horizontal distance of the center pin to the wall, and y describes
the vertical distance of the contact point below the center pin.

To
find the angle for a given choice of parameter µ we need to find
where the curve has a vertical tangent line. The curved shape of
the cam is given in polar coordinates by

r = eµθ

and we have y = r sin(a) and x = r cos(a).
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Now instead of thinking of the spiral curve in polar coordinates
r = eµθ, we can think of the curve being described in Euclidean
(standard) coordinates as a function y(x).

By the relationship of
polar coordinates we have

r2 = e2µθ

x2 + y2 = e2µ tan−1(y/x).
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Implicit differentiation gives

2x + 2yy ′ = e2µ tan−1(y/x) 2µ

x2 + y2
(xy ′ − y)

Gross algebra gives

y ′ =
−2x − ye2µ tan−1(y/x)

2y − 2µe2µ tan−1(y/x)

x2+y2

Set the bottom to zero to find a vertical tangent line! Everything
simplifies to

µ = tan(a) ⇐⇒ a = tan−1(µ).
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Now we can relate the total force applied to the center pin from
the camming action of the device to find

|F | =
T

2

√
1 +

1

µ2
.

If we know µ, and we know the amount of force |F | which will
make the cam fail, we can find out how much of load the device
can handle (i.e. how far we can fall before the unit fails).
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Fourier analysis

What if we could build a complicated function f (x) out of a bunch
of other relatively simple functions? For example:

f (x) = a0+a1 cos(πx)+b1 sin(πx)+a2 cos(2πx)+b2 sin(2πx)+· · ·
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Example: f (x) = x2 on the interval 0 ≤ x ≤ 2

x2 = a0 + a1 cos(πx) + b1 sin(πx) + a2 cos(2πx) + b2 sin(2πx) + · · ·

where

a0 =
1

2

∫ 2

0
x2dx =

4

3

an =

∫ 2

0
x2 cos(nπx)dx =

4

n2π2

bn =

∫ 2

0
x2 sin(nπx)dx =

−4

nπ
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So in a very general form we can write x2 as

x2 =
∞∑
n=0

(an cos(nπx) + bn sin(nπx))

=
4

3
+

4

π2
cos(πx) +

−4

π
sin(πx)+

1

π2
cos(2πx) +

−2

π
sin(2πx) + · · ·

Fourier series

This function is easy already (f (x) = x2), but this will be very
useful for more difficult functions!
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Spectrum analysis

A recording of a musical instrument is a time signal which may
look like

0 0.5 1 1.5 2

x 10
5

−0.15

−0.1

−0.05

0

0.05

0.1

time

Time signal

This is just a function f (t) - Let’s use Fourier series!
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If T denotes the final time of the acoustic signal we are going to
reconstruct the time function f (t) as

f (t) =
∞∑
n=0

an cos(nπt) + bn sin(nπt),

where

a0 =
1

T

∫ T

0
f (t)dt

an = C1

∫ T

0
f (t) cos(nπt)dt

bn = C2

∫ T

0
f (t) sin(nπt)dt

where we know exactly what C1 and C2 are.
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Obviously, we can’t use infinitely many terms or we’d be working
on one problem forever... literally.

f (t) =
∞∑
n=0

an cos(nπt) + bn sin(nπt)

So we use a finite amount N∗ of them as an approximation:

f (t) ≈
N∗∑
n=0

an cos(nπt) + bn sin(nπt)

and we obtain the following sounds.
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The Fundamental Theorem of Calculus

Recall if

d(t) =

∫ t

0
v(τ)dτ

then

d ′(t) = v(t).

If v represents velocity (mph), then d(t) represents the distance
traveled (mi) over the time interval [0, t].
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Let’s say v(t) = 80 mph, then in 1 hour we have traveled

d(1) =

∫ 1

0
80dt

= 80

∫ 1

0
dt

= 80t

∣∣∣∣∣
1

0

= 80 (1− 0)

= 80.

Wow, if we are traveling 80mph, in one hour we will have traveled
80 miles! Who knew?!
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Thanks for a great semester!
Good luck on your finals and

have a great winter break!
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