1. **Isothermals** The gas law for a fixed mass \(m \) of an ideal gas at absolute temperature \(T \), pressure \(P \), and volume \(V \) is \(PV = mRT \), where \(R \) is the gas constant.

(a) The level curves of \(T \) are called isothermals because at all points on such a curve the temperature is the same. Sketch some of the isothermals given by the ideal gas law for a gas constant \(R = 0.25 \) and a mass \(m = 1.25 \). **Hint:** The temperature can be viewed as a function of pressure and volume.

(b) Show that

\[
\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P} = -1
\]

(c) Show that, for an ideal gas,

\[
T \frac{\partial P}{\partial T} \frac{\partial V}{\partial T} = mR
\]

Solution:

(a) The plot below is a contour plot of the Temperature \(T \) for varying values of volume \(V \) and pressure \(P \). The dark lines represent contours which are constant in \(T \), thus they represent the isothermals of the ideal gas law for the chosen parameters \(R = 0.25 \) and \(m = 1.25 \).

(b) \(P = \frac{mRT}{V} \) so \(\frac{\partial P}{\partial V} = -\frac{mRT}{V^2}, \ V = \frac{mRT}{P} \) so \(\frac{\partial V}{\partial T} = \frac{mR}{P}, \ T = \frac{PV}{mR} \) so \(\frac{\partial T}{\partial P} = \frac{V}{mR} \). Thus \(\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P} = -1 \), since \(PV = mRT \). Notice this is...
exactly negative of the quantity we would arrive at if we treated all of the terms ∂P, ∂V, and ∂T as fractions and canceled “like” terms. Thus we see derivatives are “almost” like fractions but still something a little different.

(c) By part (a), $PV = mRT \implies P = \frac{mRT}{V}$, so $\frac{\partial P}{\partial T} = \frac{mR}{V}$. Also, $PV = mRT \implies V = \frac{mRT}{P}$ and $\frac{\partial V}{\partial T} = \frac{mR}{P}$. Since $T = \frac{PV}{mR}$, we have $T\frac{\partial P}{\partial T} \frac{\partial V}{\partial T} = \frac{PV}{mR} \frac{mR}{P} = mR$.
2. **Frost Penetration** In a study of frost penetration it was found that the temperature T at time t (measured in days) at a depth x (measured in feet) can be modeled by the function

$$T(x, t) = T_0 + T_1 e^{-\lambda x} \sin(\omega t - \lambda x)$$

where $\omega = 2\pi/365$ and λ is a positive constant.

(a) Find $\frac{\partial T}{\partial x}$. What is its physical significance?

(b) Find $\frac{\partial T}{\partial t}$. What is its physical significance?

(c) Show that T satisfies the heat equation $T_t = kT_{xx}$ for a certain constant k.

(d) If $\lambda = 0.2$, $T_0 = 0$, and $T_1 = 10$, graph $T(x, t)$.

(e) What is the physical significance of the term $-\lambda x$ in the expression $\sin(\omega t - \lambda x)$?

Solution:

(a)

$$\frac{\partial T}{\partial x} = T_1 e^{-\lambda x} \left[\cos(\omega t - \lambda x) (-\lambda) - \lambda e^{-\lambda x} \sin(\omega t - \lambda x) \right]$$

$$= -\lambda T_1 e^{-\lambda x} \left[\sin(\omega t - \lambda x) + \cos(\omega t - \lambda x) \right]$$

This quantity represents the rate of change of temperature with respect to the depth below the surface at a given time t.

(b)

$$\frac{\partial T}{\partial t} = T_1 e^{-\lambda x} \left[\cos(\omega t - \lambda x) (\omega) \right] = \omega T_1 e^{-\lambda x} \cos(\omega t - \lambda x)$$

This quantity represents the rate of change of temperature with respect to time at a fixed depth x.

(c)

$$T_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right)$$

$$= -\lambda T_1 e^{-\lambda x} \left[\cos(\omega t - \lambda x) (-\lambda) - \sin(\omega t - \lambda x) (-\lambda) \right] + \cdots$$

$$+ e^{-\lambda x} (-\lambda) \left[\sin(\omega t - \lambda x) + \cos(\omega t - \lambda x) \right]$$

$$= 2\lambda^2 T_1 e^{-\lambda x} \cos(\omega t - \lambda x)$$

From part (b) we saw, $T_t = \omega T_1 e^{-\lambda x} \cos(\omega t - \lambda x)$. So with $k = \frac{\omega}{2\lambda^2}$, the function T satisfies the heat equation.
(d) The term $-\lambda x$ is a phase shift: it represents the fact that since heat diffuses slowly through soil, it takes time for changes in the surface temperature to affect the temperature at deeper points. As x increases, the phase shift also increases. For example, when $\lambda = 0.2$, the highest temperature at the surface is reached when $t \approx 91$, whereas at a depth of 5 feet, the peak temperature is attained at $t \approx 149$, and at a depth of 10 feet, at $t \approx 207$.