	HW8	NAME:	due Wednesday, $3/15/2018$
1.	Let an analy	tic function $w = F(z)$ map a domain D one-to-one onto domain Δ .	Show that $F'(z_0) \neq 0$ for any $z_0 \in D$.

2. Show that

- (a) a bilinear map takes circles into circles. Suggestion:
 - i. Any bilinear map is a composition of linear maps and inversion.
 - ii. A linear map takes circles into circles.
 - iii. The inversion w = 1/z takes circles into circles. [This is trivial for a circle centered at the origin. But it is true for any circle.]
- (b) any circle in the z-plane can be mapped onto any circle in the ζ -plane by a suitable bilinear map. Suggestion: Note that any circle is determined by three points and consider the equation

$$\frac{(\zeta-\zeta_1)(\zeta_3-\zeta_2)}{(\zeta_1-\zeta_2)(\zeta-\zeta_3)} = \frac{(z-z_1)(z_3-z_2)}{(z_1-z_2)(z-z_3)}.$$

See that it defines a bilinear transformation w(z), which takes points z_1, z_2, z_3 to points w_1, w_2, w_3 . Now use part (a) to check that the entire circle passing through z_1, z_2, z_3 is mapped onto the circle passing through w_1, w_2, w_3 .

3. Prove the Schwartz Lemma: Let f(z) be analytic in the unit disc U : |z| < 1. If $|f(z)| \le 1$ in U and f(0) = 0, then $|f(z)| \le |z|$ in U.

Suggestion: Consider function $h(z) = \frac{f(z)}{z}$. Show that it is analytic in U (the singularity at z = 0 can be removed). Take an arbitrary $\rho \in (0, 1)$. Apply the maximum principle to h(z) to show that $|h(z)| \le 1/\rho$ when z is in the disc $U_{\rho} : |z| < \rho$. Finally, take the limit as $\rho \to 1$. 4. Show that a conformal map of a disc onto a disc is necessarily bilinear.

Suggestion: Consider an arbitrary disc in the z-plane and another arbitrary disc in the ζ -plane. Riemann says that there is a conformal transformation $\zeta = f(z)$ of the first disc onto the second one. You need to show that this conformal map is necessarily bilinear.

- (a) Some point z_0 of the first disc is taken to some point ζ_0 of the second disc. There is a bilinear transformation $z \to \tilde{z}$ of the z-plane disc onto the unit disc $|\tilde{z}| < 1$; herewith z_0 is taken to the origin $\tilde{z}_0 = 0$. Similar, there is a bilinear transformation $\zeta \to \tilde{\zeta}$ of the ζ -plane disc onto the unit disc $|\tilde{\zeta}| < 1$; ζ_0 is taken to the origin $\tilde{\zeta}_0 = 0$.
- (b) Schwartz lemma shows that if a conformal transformation ζ = f(z) maps the unit disc onto itself, so that the origin of z-plane is taken to the origin of the ζ-plane, then the transformation is just a rotation about the origin: f(z) = e^{iβ}z (β is a real number, independent of z). [Indeed, according to the Schwartz lemma, |ζ| ≤ |z|.

Applying the Schwartz lemma to the inverse transformation $z = f^{-1}(\zeta)$, we find $|z| \le |\zeta|$.

Thus, $\left|\frac{f(z)}{z}\right| = 1$, and so, $\frac{f(z)}{z} = \text{const.}$]

5. Solve Laplace's equation

$\phi_{xx} + \phi_{yy} = 0$ in the domain between two circles $x^2 + y^2 = 1$ & $(x-1)^2 + y^2 = \left(\frac{5}{2}\right)^2$

subject to the boundary condition

$$\phi(x,y) = a$$
 when $x^2 + y^2 = 1$ and $\phi(x,y) = b$ when $(x-1)^2 + y^2 = \left(\frac{5}{2}\right)^2$

(a and b are real parameters).

Suggestion: Conformally transform the domain between non-concentric circles onto a domain between concentric circles and use new symmetry to reduce the PDE to an ODE.