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1. (1a) is a particular case of the general situation (1b)

(a) The function f(z) is analytic in the entire complex plane except at z = i/2, where it has a simple pole, and at
z = 2, where it has a double pole. It is known that∮

|z|=1
f(z)dz = 2πi ,∮

|z|=3
f(z)dz = 0 ,∮

|z|=3
f(z)(z − 2)dz = 0 ,

and f(z) is bounded at infinity (i.e. ∃M > 0, ∃R > 0 : |z| > R ⇒ |f(z)| < M).

Find f(z) (unique up to an arbitrary additive constant).

Suggestion: Find an examle f0(z) of such function and use the Liouville theorem to show that f(z)− f0(z) is constant.



(b) Prove that if all singularities of an analytic function in the extended complex plane are poles, then this function
is a rational function (i.e. the ratio of two polynomials).

Suggestion: First show that the function can have only finite number of poles. Then for each pole at finite z take the negative power

part of the corresponding Laurent expansion; for z = ∞, take the positive power part; add all of them to get a rational function.

Finally, apply the Liouville theorem.



2. Argument principle to locate zeros and poles of an analytic function. Prove:

(a) If f(z) has a zero at z0 of order m, then

Res

[
f ′(z)

f(z)
; z = z0

]
= m

(b) If f(z) has a pole at z0 of order n, then

Res

[
f ′(z)

f(z)
; z = z0

]
= −n

(c) Suppose f(z) is analytic inside and on a simple closed curve C, except for finite number of poles inside C,
and moreover, f(z) 6= 0 on C.
Then

1

2πi

∮
C

f ′(z)

f(z)
dz = N0 −N∞ ,

where N0 and N∞ are (respectively) the number of zeros and the number of poles of f(z) inside C. Both zeros
and poles are to be counted with their orders (multiplicities).

(d) Argument Principle.

N0 −N∞ =
1

2π
∆C arg{f(z)} =


the number of times
the point w = f(z) surrounds the origin w = 0
as z describes C


(the conditions of the previous statement are to be satisfied,
∆C arg{f(z)} denotes the total variation of arg{f(z)} as the point z describes the curve C).



3. Applications of the Argument Principle

(a) Use the argument principle to determine the number of solutions of the equation z5 + 1 = 0 in the first quadrant
(with positive real and imaginary parts of z.)

(b) Prove the fundamental theorem of algebra, using the argument principle.

Suggestion: Apply the argument principle for a very big circle, so that all lower powers are well dominated by the highest power.

(c) Prove Rouche’s theorem: If the functions f(z) and φ(z) are analytic inside and on simple closed curve C and
if the strict inequality |φ(z)| < |f(z)| holds for all z ∈ C, then the function f(z) +φ(z) has exactly as many zeros
(counting their multiplicities) inside C as the function f(z).

Suggestion: First, show that the functions f(z) and f(z) + φ(z) do not vanish on C.

Then show that ∆C arg{f(z)} = ∆C arg{f(z) + φ(z)}

(d) Determine the number of roots (counting their multiplicities) of the equation z4 + 3z3 + 6 = 0 inside the circle
|z| = 2.

(e) Determine the number of roots (counting their multiplicities) of the equation 2z5 − 6z2 + z + 1 = 0 inside the
annulus 1 ≤ |z| ≤ 2.

(f) Determine the number of roots of the equation z4 + 3z3 + 6 = 0 inside the circle |z| = 2.
Does this equation have roots of multiplicity m > 1?


