$\mathbf{HW5}$

due Wednesday, 2/14/2018

1. Let z_0 be an isolated singularity of an analytic function f(z). Near z_0 , the function f(z) can be represented by its Laurent series (L)

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n.$$

Prove:

(a) If (L) has no negative powers, then z_0 is a removable singularity.

NAME:

- (b) If z₀ is a removable singularity, then (L) has no negative powers. Suggestion: You should actually prove a little stronger statement: If f(z) is bounded in some neighborhood around z₀, then (L) has no negative powers. Idea of the proof: Consider the formula for the (L) coefficients given as the integral over a small circle |z - z₀| = R → 0; estimate for n < 0. This is similar to the proof of the Liouville theorem.
- (c) If (L) has a finite number of negative powers, then z_0 is a pole.
- (d) If z_0 is a pole, then (L) has a finite number of negative powers.

Suggestion: Expand g(z) = 1/f(z) in the Taylor series around z_0 .

- (e) If (L) has infinitely many negative powers, then z_0 is an essential singularity.
- (f) If z_0 is an essential singularity, then (L) has infinitely many negative powers. Suggestion: The last two statements follow from the previous ones.

2. Prove Kasorati-Sokhotsky-Weierstrass Theorem:

If an analytic function f(z) has an essential singularity at z_0 , then f(z) comes arbitrarily close to *any* complex value in every neighbourhood of z_0 ; in other words, $\forall \epsilon > 0, \forall \delta > 0$, and \forall complex number w, \exists a complex number z such that

 $\forall \epsilon > 0, \forall \delta > 0, \text{ and } \forall \text{ complex number } w, \exists a \text{ complex number } z \text{ su}$ $|z - z_0| < \delta \text{ and } |f(z) - w| < \epsilon.$

Suggestion: Assume the contrary and consider function $g(z) = [f(z) - w]^{-1}$.

3. Show that

$$\int_0^{2\pi} \frac{d\phi}{(p+q\cos\phi)^2} = \frac{2\pi p}{(p^2-q^2)^{3/2}}$$

(with parameters p > q > 0).

4. Show that

$$\int_0^\infty \frac{x^m}{x^n+1} \, dx = \frac{\pi}{n \, \sin \frac{\pi(m+1)}{n}} \qquad \text{with integer parameters } m \text{ and } n, \quad n-2 \ge m \ge 0.$$

Suggestion: Notice that the expression under the integral sign is multiplied by a constant factor when x is changed to $xe^{i2\pi/n}$. Consider residue integration in the sector between z = r and $z = re^{i2\pi/n}$ $(0 \le r < \infty)$. The integrand has only one pole in this sector.