HW4 NAME: due Wednes

1. {*}

(a) Prove the Mean Value Theorem:

The value of analytic function $f(z_0)$ equals the arithmetic mean average of the values of this function on a circle with center at z_0

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$

(the circle should lie in the analyticity domain, but otherwise the radius R is arbitrary).

- (b) Prove: If f(z) is analytic in a domain D, then |f(z)| cannot attain a strict local maximum in D.
- (c) Give an example of a non-constant function f(z) analytic in a domain D, so that |f(z)| attains a strict local *minimum* in D.

- 2. **{***}
 - (a) Let f(z) be analytic in a domain D. Definition: A point $z_0 \in D$ is called a zero of f(z), if $f(z_0) = 0$. Prove that any analytic function (not identically equal to zero) can have only isolated zeros (if $f(z_0) = 0$, then there exists a positive ϵ such that $f(z) \neq 0$ when $0 < |z - z_0| < \epsilon$). Suggestion: See the proof of the Uniqueness Theorem.
 - (b) Can an analytic function have a non-isolated singularity?

3. (a) Show that the function

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

satisfies the functional equation $\Gamma(z+1) = z\Gamma(z)$ for any complex z whose real part is positive.

- (b) Show that this function generalizes factorial to complex numbers, namely $\Gamma(n) = (n-1)!$ for any positive integer n.
- 4. {*} Does there exist another function F(z) which is also analytic in the right half-plane $\operatorname{Re}(z) > 0$ and coincides with $\Gamma(z)$ when z is any positive integer?

- 5. Give an example of a power series (over non-negative integer powers) whose radius of convergence R is
 - (a) finite $R \neq 0$,
 - (b) $R = \infty$,
 - (c) R = 0.
- 6. A function f(x) has two power representations in a neighborhood of x = 0

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $f(x) = \sum_{n=0}^{\infty} b_n x^n$

Is it true that $a_n = b_n$ for all $n = 0, 1, 2, \ldots$?

[If this is true, then we can find Taylor series in any way (in particular, without differentiation).]

7. $\{*\}$ Let the **Euler numbers** E_n be defined by the power series

$$\frac{1}{\cosh z} = \sum_{n=0}^{\infty} \frac{E_n}{n!} z^n.$$

- (a) What is the radius of convergence of this series?
- (b) Determine the first six Euler numbers.

Suggestion: Do not differentiate. Instead, expand e^z , $\cosh z$, $1/\cosh z$ in Taylor series with center at the origin.

8. Suppose a complex function f(z) is differentiable in a domain D of the complex plane. Prove that if the domain D contains annulus

$$A: \quad R_1 < |z - z_0| < R_2$$

 $(z_0 \text{ is an arbitrary complex point, which may or may not belong to } D)$ then the function f(z) can be represented by its Laurent series:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$
, where $a_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$,

and C is any simple closed curve in A enclosing z_0 .

While making the proof, answer these questions:

- (a) Where does this series converge to f(z)?
- (b) Where does the series converge absolutely?
- (c) Where does the series converge uniformly?
- (d) Is it true that $a_n n! = f^{(n)}(z_0)$ for positive n?
- (e) Where & why in the proof do you need to consider a smaller annulus A': $R'_1 < |z z_0| < R'_2$ $(R'_1 > R_1, R'_2 < R_2)$ compared to the original annulus $A : R_1 < |z z_0| < R_2$?

Suggestion: Fix z and consider a smaller annulus $R'_1 < |z - z_0| < R'_2$ that still contains z. Using Cauchy's formula, represent f(z) as the sum of two integrals: one over circle $|z - z_0| = R'_1$, another over circle $|z - z_0| = R'_2$. Then use geometric series expansions. To have a little shorter writing, you can take $z_0 = 0$.