HW3

1. Give an example of a real function \(y = f(x) \) (a real-valued function of a real variable) with these properties
 - the function is infinitely differentiable everywhere
 - its Taylor series at some point \(x_0 \) converges,
 - but it converges to a different function.

2. \{*\} Find the radius of convergence of the Taylor series with the given center for the given function:
 - (a) \(f(z) = \frac{e^{z^2}}{(\sin z - 2)^2} \), \(z_0 = 1 \),
 - (b) \(f(z) = \frac{(z^2 - 1)^2}{(\cos z - 2)^3} \), \(z_0 = 1 \),
 - (c) \(f(x) = \frac{e^{-x^2}}{(x^2 + 1)^3} \) (\(x \) is a real variable), \(x_0 = 1 \),
 - (d) \(f(x) = e^{x^4} \) (\(x \) is a real variable), \(x_0 = 0 \),

(you do not need to find the series themselves).
3. \{\ast\}

(a) Prove the Liouville Theorem:
If \(f(z) \) is bounded and entire (i.e. analytic in the entire complex plane), then \(f(z) \) is constant.

\textit{Idea:} Consider Cauchy’s formula for \(f'(z) \), as integral over a “big” circle \(|\zeta - z| = R\). Then take the limit \(R \to \infty \) and show that \(f'(z) = 0 \).

(b) Prove the \textbf{Fundamental Theorem of Algebra}:
An \(n \)-th order polynomial \(P(z) \) has \(n \) roots in the complex plane.

\textit{Idea:} If \(P \) has no roots, then the function \(1/P \) is bounded and entire.

(c) Prove: If \(f(z) \) is entire and grows at \(z \to \infty \) not faster than a linear function,
(i.e. there exist numbers \(A \) and \(B \), such that \(|f(z)| < A|z| + B \) for all complex \(z \)),
then \(f(z) \) is a linear function.

4. A real function \(y = f(x) \) is called \textit{real analytic} if it can be represented by a power series in the neighborhood of each point. Show that there is no analog of the Liouville Theorem for real analytic functions.
(a) Prove the **Morera Theorem:**
If \(f(z) \) is (1) continuous in a domain \(D \),
and (2) \(\oint_C f(z)dz = 0 \) for any closed curve \(C \) in \(D \),
then \(f(z) \) is analytic in \(D \).

* Idea: Fix a point \(z_0 \) and show that \(F(z) = \int_C f(z)dz \) (\(C \) is a curve from \(z_0 \) to \(z \)) is well defined and is an antiderivative of \(f(z) \).
There exists \(F''(z) \).

(b) Suppose, a simply-connected domain \(D \) consists of two disjoint domains \(D_1, D_2 \) and a curve \(\Gamma \), between them (\(D_1 \) and \(D_2 \) share a common boundary piece \(\Gamma \)); the function \(f(z) \) is analytic in \(D_1 \), analytic in \(D_2 \), and continuous in \(D \).
Show that \(f(z) \) is analytic in \(D \).

* Idea: To use the Morera Theorem, show that \(\oint_C f(z)dz = 0 \) for three kinds of closed curves \(C \):
(1) \(C \) is completely in \(D_1 \cup \Gamma \), (2) \(C \) is completely in \(D_2 \cup \Gamma \), and (3) \(C \) is partially in \(D_1 \) and partially in \(D_2 \).