1. (a) For the function $u(x, y) = x + 4y$, find the function $v(x, y)$ such that $w = u + iv$ is an analytic function of the variable $z = x + iy$.

(b) For $v(x, y) = (1 + x)y$, find $u(x, y)$ such that $w = u + iv$ is an analytic function of the variable $z = x + iy$.

(c) Consider the function $u(x, y) = x^2$. Does there exist a function $v(x, y)$ such that $w = u + iv$ is an analytic function of the variable $z = x + iy$.
2. We will see that if a complex function is differentiable (in complex sense) in a domain \(D \), then it is \textit{continuously} differentiable in \(D \) (and even infinitely differentiable, and even can be represented by its Taylor series).

Give an example of real function \(y = f(x) \) (\(x \) and \(y \) are real) which is differentiable everywhere, but not continuously differentiable.
3. Find the values of four integrals

\[I = \int_C \bar{z} \, dz \]

along four curves \(C \):

\(C_1 \) : two segments from \(z = 0 \) to \(z = 1 \) to \(z = 1 + i \),
\(C_2 \) : one segment from \(z = 0 \) to \(z = 1 + i \),
\(C_3 \) : arc from \(z = 0 \) to \(z = 1 + i \) of a circle with center at \(z = 1 \),
\(C_4 \) : two segments from \(z = 0 \) to \(z = i \) to \(z = 1 + i \).
4. Calculate

\[\oint_C z^n \, dz \quad \text{for all integers } n = 0, \pm 1, \pm 2, \ldots, \]

where \(C \) is a circle \(|z| = R \) (taken counterclockwise) with center at the origin and radius \(R \).
5. Evaluate the line integral
\[
\int_C z^3 \, dz
\]
over the path \(C \) traversing from \(z = 1 + i \) to \(z = 1 - i \) along the following composite curve (\(C = C_1 + C_2 + C_3 \))

\(C_1 \): hyperbola \(2y^2 - x^2 = 1 \) from \(z = 1 + i \) to \(z = -2 + i\sqrt{\frac{5}{2}} \),

\(C_2 \): segment \(x = -2 \) from \(z = -2 + i\sqrt{\frac{5}{2}} \) to \(z = -2 - i\sqrt{\frac{5}{2}} \),

\(C_3 \): hyperbola \(2y^2 - x^2 = 1 \) from \(z = -2 - i\sqrt{\frac{5}{2}} \) to \(z = 1 - i \).
6. **Variations on the topic of Cauchy’s Theorem.** Are the following statements true?

(a) If \(f(z) \) is analytic in simply connected domain \(D \) and continuous in \(\bar{D} \), then

\[
\oint_{\partial D} f(z)dz = 0
\]

*You can assume that \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) (the unit circle).

(b) Let \(f(z) \) be analytic in a simply connected domain \(D \). Then for all curves \(C \) in \(D \) with common ends \(a \) and \(b \), the integral

\[
\int_{C} f(z)dz
\]

has the same value (the integral depends only on the end points \(a, b \) and otherwise is independent of the integration path \(C \)).

(c) Let \(f(z) \) be analytic in a simply connected domain \(D \), and \(z_0 \) be an arbitrary point in \(D \). Then the integral

\[
F(z) = \int_{z_0}^{z} f(\zeta)d\zeta \quad (z \in D)
\]

(as a function of the upper integration limit) is also an analytic function in \(D \), and

\[
F'(z) = \frac{d}{dz} \int_{z_0}^{z} f(\zeta)d\zeta = f(z).
\]

(d) Let \(f(z) \) be analytic in a domain \(D \) (\(D \) can be multiply connected, i.e. it can have holes). Then the value of the integral

\[
I = \oint_{C} f(z)dz
\]

remains unchanged if the closed curve \(C \) is continuously deformed, all the time being completely in \(D \).
7. Evaluate

\[\oint_C \frac{e^z}{z(z^2 - 16)} \, dz, \quad \oint_C \frac{e^z}{z^2(z^2 - 16)} \, dz, \]

where \(C \) is circle \(|z| = 3 \).

\textit{Suggestion:} Deform \(C \) to a tiny circle \(\Gamma : |z| = \epsilon \), and show that

\[
\oint_{\Gamma} \frac{f(z)}{z} \, dz = f(0) \oint_{\Gamma} \frac{1}{z} \, dz \quad \text{if} \quad f(z) = f(0) + O(z), \ z \to 0,
\]

\[
\oint_{\Gamma} \frac{f(z)}{z^2} \, dz = f'(0) \oint_{\Gamma} \frac{1}{z} \, dz \quad \text{if} \quad f(z) = f(0) + f'(0)z + O(z^2), \ z \to 0.
\]