
M1220-2 Quiz 9 - Homework Quiz Spring 2005

Quiz Scores (out of 10): n = 121; mean = 7.8

25th percentile = 7 ; median (50th percentile) = 8 ; 75th percentile = 9.5

1. (6 pts) State whether the following series are absolutely convergent, conditionally con-
vergent, or divergent. Justify your answer by listing the test used and showing the test
results.
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4 < 1. So,
by the Ratio Test, this series converges absolutely.
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so the Ratio Test is inclusive. However, the series,
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by the Limit Comparison Test, the series
∑

n
3+n2 also diverges. In that case, the given

series cannot converge absolutely.
However, since the terms of the given series, ignoring their sign, are decreasing and since
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conditionally.



2. (2 pts) Write out the first 4 terms in the power series given below. Then find the
convergence set for the power series and the radius of convergence.
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| = |3x|. But |3x| <
1when −1/3 < x < 1/3 so the power series converges when −1/3 < x < 1/3. At the
endpoints of the interval: when x = 1/3, the above series becomes
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which converges
by the Alternating Series Test; when x = −1/3, the above series becomes
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diverges as it is a p-series with p ≤ 1. So, the convergence set for this series is (−1/3, 1/3]
and the radius of convergence is R = 1/3.

3. (2 pts) Write out the first 4 terms in the power series given below. Then find the
convergence set for the power series and the radius of convergence.
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The first four terms are: (x− 2) + (x− 2)2/22 + (x− 2)3/33 + (x− 2)4/44.
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n+1 )n = 0. So, the convergence set for this series is (−∞,+∞) and the
radius of convergence is R = +∞.


