Math 1040-1
June 22, 2012
Directions: Show all work for full credit. Clearly indicate all answers. Simplify all mathematical expressions completely. Unless otherwise directed, give each decimal approximation rounded to at least three decimal places.

Formulas:

${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
Ways to order n objects with n_{1} alike, n_{2} alike, \ldots, and n_{k} alike $=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$
${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$
$\sigma^{2}=\sum(x-\mu)^{2} P(x)$

1. A company that makes cartons finds that the probability of producing a carton with a puncture is 0.05 , the probability that a carton has a smashed corner is 0.08 , and the probability that a carton has a puncture and has a smashed corner is 0.004 .

Are the events "selecting a carton with a puncture" and "selecting a carton with a smashed corner" mutually exclusive? Find the probability that a carton chosen at random has a puncture or a smashed corner. (\#15 from 3.3)
The events are not mutually exclusive, since it is possible for them to both happen at once.

$$
\begin{aligned}
P(\text { puncture or smashed corner })= & P(\text { puncture })+P(\text { smashed corner }) \\
& -P(\text { puncture and smashed corner }) \\
= & 0.05+0.08-0.004=0.126
\end{aligned}
$$

2. In a state lottery, you choose 5 different numbers out of 40 . To win the top prize, your numbers must match the 5 numbers chosen by the lottery in any order. You purchase one lottery ticket. What is the probability that you will win the top prize? (\#53 from 3.4)

Since numbers can be picked in any order, there are ${ }_{40} C_{5}=\frac{40!}{35!5!}=658008$ ways to choose 5 numbers at a time out of 40 . Since there is only one winning combination, the probability of selecting the winning combination is $1 / 658008=0.00000152$.
3. Find the number of distinguishable ways that the letters in "statistics" can be arranged. (\#27 from 3.4)

Of the 10 letters in the word, there are 3 s's, 3 t's, 1 a, 2 i's, and 1 c , so the total number of distinct arrangements of the letters is $\frac{10!}{3!3!1!2!1!}=50400$.
4. Let x represent the amount of snow (in inches) that fell in Nome, Alaska, last winter. Determine whether x is discrete or continuous. Explain your reasoning. (\#19 from 4.1) x is continuous, since the amount of snow in a year can be any value in the interval from 0 to infinity. (Note: Saying that x can take an infinite number of values x is not sufficient, since the set of whole numbers is infinite, but is discrete.)
5. The number of televisions per household in a small town of 2600 households are: (\#29 from 4.1)

Televisions	0	1	2	3
Households	26	442	728	1404

(a) Let x represent the number of televisions for a randomly selected household. Construct a probability distribution for the above data:

x	0	1	2	3
$P(x)$	$\frac{26}{2600}=0.01$	$\frac{442}{2600}=0.17$	$\frac{728}{2600}=0.28$	$\frac{1404}{2600}=0.54$

(b) Calculate the mean of the probability distribution.

$$
\mu=\sum x P(x)=0 \cdot 0.01+1 \cdot 0.17+2 \cdot 0.28+3 \cdot 0.54=2.35
$$

(c) Calculate the standard deviation of the probability distribution.

$$
\begin{aligned}
\sigma^{2}= & \sum(x-\mu)^{2} P(x) \\
= & (0-2.35)^{2} \cdot 0.01+(1-2.35)^{2} \cdot 0.17+(2-2.35)^{2} \cdot 0.28 \\
& +(3-2.35)^{2} \cdot 0.54 \\
= & 0.6275 \\
\sigma= & \sqrt{0.6275}=0.792
\end{aligned}
$$

