Section 5.2, Normal Distributions: Finding Probabilities Section 5.3, Normal Distributions: Finding Values

In the last section, we focused on finding probabilities for the standard normal distribution. Now, we will consider normal distributions with $\mu \neq 0$ and/or $\sigma \neq 1$.

To find probabilities for variables from a normal distribution with mean μ and standard deviation σ, we will first need to find the z-score to convert to standard normal, then we can use the table that we used in the last section to find probabilities.

We will also look at going from a probability to a range of observations that correspond to that probability. For example, we will look at finding quartiles and percentile. The $p^{\text {th }}$ percentile is a value such that p percent of the observations fall at or below that value.

Examples

1. Find the $7^{\text {th }}$ percentile for a standard normal distribution.

We want to find x such that $P(z \leq x)=0.07$. The decimal on the table closest to .07 is .0694 (corresponding to a z-score of -1.48), so the $7^{\text {th }}$ percentile is approximately -1.48 .
2. ACT scores are approximately normal with a mean of 21 and a standard deviation of 4.7.
(a) What is the probability that a student chosen at random receives less than a 26 on the ACT?
Let x represent this student's ACT score. The z-score for 26 is $z=\frac{26-21}{4.7}=1.06$ (Note: You should round to 2 decimal places, since the table goes to 2 decimal places.). So, $P(x<26)=P(z<1.06)=0.8554$.
(b) What is the probability that a student chosen at random receives at least a 24 on the ACT?
The z-score for 24 is $z=\frac{24-21}{4.7}=0.64$, so $P(x \geq 24)=P(z \geq 0.64)=1-P(z<0.64)=$ $1-0.7389=0.2611$.
(c) What is the third quartile for the ACT?

We want to find y such that $P(x<y)=0.75$. The closest probability to 0.75 on the table is 0.7486 , which corresponds to a z-score of 0.67 . Now, we want the y-value that corresponds to a z-score of 0.67 . We can do this by solving the equation:

$$
\begin{aligned}
\frac{y-21}{4.7} & =0.67 \\
y-21 & =3.149 \\
y & =24.149
\end{aligned}
$$

so the third quartile is approximately 24.149 .
(d) What is the $80^{t h}$ percentile for the ACT?

We want to find y such that $P(x<y)=0.8$. The closest probability to 0.8 on the table is 0.7995 , which corresponds to a z-score of 0.84 . Again, we want the y-value that corresponds to a z-score of 0.84 . We can do this by solving the equation:

$$
\begin{aligned}
\frac{y-21}{4.7} & =0.84 \\
y-21 & =3.948 \\
y & =24.948,
\end{aligned}
$$

so the third quartile is approximately 24.948 .
3. A brand of cassette decks had a deck life that was normally distributed with a mean of 2.3 years and a standard deviation of 0.4 years.
(a) What is the probability that the cassette deck will break down less than one year after purchase?

$$
P(x<1)=P\left(z<\frac{1-2.3}{0.4}\right)=P(z<-3.25)=0.0006
$$

(b) What is the probability that the cassette deck will last for at least 3 years after purchase?

$$
\begin{aligned}
P(x \geq 3) & =1-P(x<3)=1-P\left(z<\frac{3-2.3}{0.4}\right)=1-P(z<1.75) \\
& =1-0.9599=0.0401
\end{aligned}
$$

(c) What is the $99^{t h}$ percentile for the life of these cassette decks?

We want y such that $P(x \leq y)=0.99$. The closest probability on the table is 0.9901 , occurring at $z=2.33$, so

$$
\begin{aligned}
& \frac{y-2.3}{0.4}=2.33 \\
& y-2.3=.932 \\
& y=3.232
\end{aligned}
$$

so the $99^{\text {th }}$ percentile is approximately 3.232 years.
4. A pizza parlor franchise specifies that the average amount of cheese on a large pizza should be 8 ounces and the standard deviation should be 0.5 ounces.
(a) What is the probability that a pizza chosen at random has less than 7.3 ounces of cheese?

$$
P(x<7.3)=P\left(z<\frac{7.3-8}{0.5}\right)=P(z<-1.4)=0.0808
$$

(b) What is the probability that a pizza has more than 8.95 ounces of cheese?

$$
\begin{aligned}
P(x>8.95) & =1-P(x \leq 8.95)=1-P\left(z \leq \frac{8.95-8}{0.5}\right)=1-P(z \leq 1.9) \\
& =1-0.9713=0.0287
\end{aligned}
$$

(c) What is the probability that a pizza contains between 7.6 and 8.3 ounces of cheese?

$$
\begin{aligned}
P(7.6 \leq x \leq 8.3) & =P\left(\frac{7.6-8}{0.5} \leq z \leq \frac{8.3-8}{0.5}\right)=P(-.8 \leq z \leq 0.6) \\
& =0.7257-0.2119=0.5138
\end{aligned}
$$

(d) What is the probability that a pizza has exactly 8 ounces of cheese?

Since this is a continuous distribution, the probability of taking an exact value is zero. (We can see this by noticing that $P(x=8)=P(8 \leq x \leq 8)$, so when we convert to z-scores and look up probabilities in the table, we'll be subtracting the same number from itself.)
(e) What is the least amount of cheese that can be on a pizza that will still place in the top 10% of cheesiest pizzas?
We want y such that $P(x>y)=0.1$, which is the same a y that satisfies $P(x<y)=.9$.
0.8997 is the closest probability to 0.9 on the table, so $z=1.28$. Then, finding y, we solve:

$$
\begin{aligned}
\frac{y-8}{0.5} & =1.28 \\
y-8 & =0.64 \\
y & =8.64
\end{aligned}
$$

(f) Between what two values does the middle 70% of cheese lie?

We first want y such that $P(-y<z<y)=0.7$, and we will convert to the x value later. By symmetry, we will have 15% of the observations above y, and 15% below $-y$. This means that 85% of the observations are below y, so y satisfies $P(x<y)=0.85$. 0.8508 is the closest probability on the table to this, which corresponds to a z-score of 1.04 . Changing to a normal distribution with mean 8 and standard deviation 0.5 , we get that the middle 70% of cheese lies between $8-1.04 \cdot 0.5=7.48$ and $8+1.04 \cdot 0.5=8.52$.

