Section 5.1, Introduction to Normal Distributions and the Standard Normal Distribution

In this section, we will talk about a special bell-shaped distribution, the normal distribution and learn how to find probabilities that a random normal variable falls in a given range.

A normal distribution is a continuous probability distribution for a random variable x with the following properties:

- The mean, median, and mode are equal.
- The curve is bell-shaped and symmetric about the mean.
- The total area under the curve equals 1.
- The curve approaches, but never touches, the x-axis as it extends farther from the mean.
- Between $\mu-\sigma$ and $\mu+\sigma$, the graph curves downward. To the left of $\mu-\sigma$ and to the right of $\mu+\sigma$, the graph curves upward. The points at which the curve changes from curving upward to downward are called points of inflection.

The graph of a normal distribution is called the normal curve. The equation for the curve is:

$$
y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

The standard normal distribution is a normal distribution with $\mu=0$ and $\sigma=1$.
Any observation x from a normal distribution can be "converted" to data from a standard normal distribution by calculating a z-score:

$$
z=\frac{\text { Value }- \text { Mean }}{\text { Standard deviation }}=\frac{x-\mu}{\sigma}
$$

Example

Heights of males at a certain university are approximately normal with a mean of 70.9 inches and a standard deviation of 2.9 inches. Find the z-score for a male who is 6 feet tall.
First, we need to convert 6 feet to inches, so we want a z-score for 72 inches.

$$
z=\frac{72-70.9}{2.9}=0.3793
$$

1 Finding probabilities

For continuous distributions, the probability that a random variable takes an interval of values is the area under the distribution curve over that interval.

For normal distributions, tables are used to calculate probabilities. Table 4 on pages A16 and A17 in the back of your book gives the probability that a standard normal random variable falls below a certain value z. (We will look at other normal distributions in the next section.)

Examples

Let z be a standard normal random variable:

1. Find the probability that z falls below 0 .

By looking up 0 on the table, we see that the probability is 0.5 .
2. Find the probability that z falls below 2.74 .

To find this, we look up 2.74 in the table and see that the probability is 0.9969 .
3. Find the probability that z falls below -0.93 .

To find this, we look up -0.93 in the table and see that the probability is 0.1762 .
4. Find the probability that z is at least 0.62 .

Looking up 0.62 in the table gives us that the probability that z is less than 0.62 is 0.7324 , but these are complementary events, so the probability that we want is $1-0.7324=0.2676$. (Note the value in the table for -0.62 is also 0.2676 . This happens due to symmetry.)
5. Find $P(z \geq-2.6)$.

Note that $P(z \geq-2.6)=1-P(z<-2.6)=1-0.0047=0.9953$.
6. Find $P(-0.24 \leq z \leq 0.43)$.

From the table, we know that $P(z \leq 0.43)=0.6664$ and $P(z \leq-0.24)=0.4052$, so the area in between the two values is $0.6664-0.4052=0.2612$.
7. Find $P(z=1)$.

We can think of the above probability as $P(1 \leq z \leq 1)$, then use the reasoning from the last part to get that $P(z=1)=0$. We can also get this answer with the "area under the curve" definition for probability, which leads us to a rectangle of width zero, which has area zero.
8. Find $P(z \leq-4)$.

This number isn't on the table, but by following the patterns, we see that $P(z \leq-4) \approx 0$.
9. Find x such that $P(z \leq x)=0.9222$.

Now, we want to find a probability on the table, and use that to get the value for x. Finding 0.9222 , we see that it corresponds to a z-value of 1.42 , so $x=1.42$.
10. Find the first quartile for a standard normal distribution.

Here, we want x such that $P(z \leq x)=0.25$. The closest probability to 0.25 on the table is 0.2514 , corresponding to $x=-0.67$, so $Q_{1} \approx-0.67$.

