Section 4.2, Binomial Distributions

A binomial experiment is a probability experiment that satisfies the following conditions:

- The experiment is repeated for a fixed number of trials, with each trial being independent of the other trials.
- There are exactly two possible outcomes for each trial: success (S) and failure (F).
- The probability of success $P(S)$ is the same for each trial.
- The random variable x counts the number of successful trials.

Our notation will include: n, the number of times a trial is repeated; $p=P(S)$, the probability of success in a single trial; $q=P(F)=1-p$, the probability of failure in a single trial; and x, the number of success in the n trials.

For example, if we flip a weighted coin 10 times and count the number of heads (let's say that $P($ heads $)=0.6$ and $P($ tails $)=0.4)$ Then we will consider "heads" as a success, and "tails" as a failure, so $n=10, p=0.6, q=0.4$, and x will be the count of the number of heads (can be any value between 0 and 10).
Another example easily applies to multiple choice tests. If there are 8 questions on a quiz, where each has 5 possible answers. While completing the quiz, you randomly guess an answer for each question. Then, $n=8, p=1 / 5=0.2, q=1-0.2=0.8$, and x is the number of questions that you get correct (any number between 0 and 8). Note: If you are guessing on some questions, but not all, this is no longer a binomial experiment, since the probability of getting a correct answer is different for each "trial" (i.e. question). For example, if you narrow one answer down to 2 possible options, then guess, your probability to get it correct is 0.5 , but if you have 4 possible options on another question the probability will be 0.25 .

The probability of getting exactly x successes in n trials of a binomial experiment is

$$
P(x)={ }_{n} C_{x} p^{x} q^{n-x}=\frac{n!}{(n-x)!x!} p^{x} q^{n-x} .
$$

Furthermore, the mean is $\mu=n p$, the variance is $\sigma^{2}=n p q$, and the standard deviation is $\sigma=\sqrt{n p q}$.

Examples

1. When flipping a weighted coin (with the probability of heads being 0.6), what is the probability that it will come up heads exactly 5 times when it is flipped 10 times?

This describes a binomial distribution with $n=10, p=0.6$, and $q=0.4$. We want to find

$$
P(5)=\frac{10!}{5!5!} 0.6^{5} \cdot 0.4^{5}=0.2007
$$

2. When randomly guessing on a multiple choice test with 8 questions, where each question has 4 options, what is the probability that you will get at least 7 questions correct? What is the expected number of questions a student will get correct without studying for the exam? What is the standard deviation?

First note that $n=8, p=0.25$, and $q=0.75$. We want to find

$$
P(7 \text { or } 8)=P(7)+P(8)=\frac{8!}{1!7!} 0.25^{7} \cdot 0.75^{1}+\frac{8!}{0!8!} 0.25^{8} \cdot 0.75^{0}=0.000381
$$

(Recall that $0!=1$ and $\left.0.75^{0}=1.\right)$

The average number of questions a student will get correct is $\mu=8.0 .25=2$, and the standard deviation is $\sigma=\sqrt{8 \cdot 0.25 \cdot 0.75}=1.22474$.

