Formulas

- $P(E)=\frac{\text { Number of outcomes in } E}{\text { Total number of outcomes }}$ if outcomes in the sample space are equally likely.
- $P(E)+P\left(E^{\prime}\right)=1$
- $P(A$ and $B)=P(A) \cdot P(B \mid A)$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
- ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
- Ways to order n objects with n_{1} alike, n_{2} alike, \ldots, and n_{k} alike $=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$ (Given)
- ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$
- $\mu=E(x)=\sum x P(x)$
- $\sigma^{2}=\sum(x-\mu)^{2} P(x)$ (Given)
- Binomial:

$$
\begin{aligned}
& -P(x)=\frac{n!}{(n-x)!x!} p^{x} \cdot q^{n-x} \text { (Given) } \\
& -\mu=n p \\
& -\sigma^{2}=n p q
\end{aligned}
$$

- Geometric:
$-P(x)=p \cdot q^{x-1}$ (Given)
$-\mu=\frac{1}{p}$
$-\sigma^{2}=\frac{1-p}{p^{2}}($ Not needed $)$
- Poisson:
$-P(x)=\frac{\mu^{x} e^{-\mu}}{x!}$ (Given)
$-\mu=\mu$
$-\sigma^{2}=\mu($ Not needed $)$

