Formulas

- $P(E) = \frac{\text{Number of outcomes in } E}{\text{Total number of outcomes}}$ if outcomes in the sample space are equally likely.
- P(E) + P(E') = 1
- $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$
- P(A or B) = P(A) + P(B) P(A and B)

•
$$_nP_r = \frac{n!}{(n-r)!}$$

• Ways to order *n* objects with n_1 alike, n_2 alike, ..., and n_k alike $= \frac{n!}{n_1! n_2! \cdots n_k!}$ (Given)

•
$$_{n}C_{r} = \frac{n!}{(n-r)! r!}$$

• $\mu = E(x) = \sum xP(x)$
• $\sigma^{2} = \sum (x-\mu)^{2}P(x)$ (Given)
• Binomial:

$$-P(x) = \frac{n!}{(n-x)! \, x!} p^x \cdot q^{n-x} \text{ (Given)}$$
$$-\mu = np$$
$$-\sigma^2 = npq$$

• Geometric:

-
$$P(x) = p \cdot q^{x-1}$$
 (Given)
- $\mu = \frac{1}{p}$
- $\sigma^2 = \frac{1-p}{p^2}$ (Not needed)

• Poisson:

$$-P(x) = \frac{\mu^{x} e^{-\mu}}{x!} \text{ (Given)}$$
$$-\mu = \mu$$
$$-\sigma^{2} = \mu \text{ (Not needed)}$$