Math1090 Final Exam

Spring， 2007
Name \qquad

Instructions：
費 Show all work as partial credit will be given where appropriate．
貫 If no work is shown，there may be no credit given．
貫 All final answers should be written in the space provided and in simplified form．

DO NOT WRITE IN THIS TABLE！！！
（It is for grading purposes．）
Grade：

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

Total \qquad

1) Find all solutions to the following equation and inequality.
(a) $|3 x+8|<2$

Answer 1a: \qquad
(b) $|2-3 x|=-2$

Answer 1b:
2) The monthly revenue of a company is given by $R(p)=900 p-8 p^{2}$ where p is the price in dollars of the product manufactured. At what price will the revenue be $\$ 20,000$ if the price must be greater than $\$ 50$?

Answer 2: \qquad
3) Let $f(x)=\sqrt{x}$.
(a) Let $g(x)=\sqrt{x-3}+2$. Then, $g(x)$ has the same shape as $f(x)$, but it's translated (aka shifted). Answer the following questions regarding $g(x)$ (compared to $f(x)$).
$g(x)$ is shifted _units to the left or right (circle one) and it's shifted \qquad units up or down (circle one).
(b) Now, let $h(x)=\sqrt{-x}$. Then, $h(x)$ is a reflection of $f(x)$ about the x-axis or y-axis or neither axis (circle one).
4) For the following functions, answer the specified questions.

$$
f(x)=x^{3}+x \quad \text { and } \quad g(x)=\sqrt{x-1}
$$

(a) What is the domain of $g(x)$?
(b) $(f \circ g)(17)=$ \qquad
(c) $g^{-1}(x)=$ \qquad
(d) $(f-g)(2)=$ \qquad
5) Find the x - and y-intercepts and the vertex of $f(x)=x^{2}+4 x-5$ algebraically. Use this information to sketch a graph of $f(x)$.

x-intercept(s): \qquad
y-intercept: \qquad
vertex: \qquad
6) Suppose that for a product A , the demand equation is $p=\frac{-1}{90} q+10$ and the supply equation is $150 p-q=300$ where q is the number of units sold per week and p is the price per unit. Solve the system of equations to find the point of equilibrium.
\qquad
7) Solve for x.
(a) $\log _{4}(x-2)=-2$
(b) $7^{2 x+4}-3=11$

$$
x=
$$

(c) $\log _{3} x+\log _{3}(3 \mathrm{x})=3$

$$
x=
$$

\qquad

$$
x=
$$

8) Write each expression in terms of $\ln x, \ln y, \ln z$, and $\ln w$.
(a) $\ln \left(\frac{x^{3} y^{2} z^{4}}{w^{5}}\right)=$
(b) $\ln \left(\left(\frac{1}{w^{2}}\right)^{-3} \sqrt{\frac{y z}{z^{3}}}\right)=$
9) A trust fund is set up for a girl when she is born. How much must the single payment be if the trust fund is to be worth $\$ 30,000$ in 18 years? Assume the interest rate is 6% compounded monthly.
\qquad
10) Suppose you take out an auto loan for $\$ 8,500$ at 6% interest compounded monthly for five years.
(a) What is the monthly payment?
(b) How much is the finance charge?
(a) Payment = \$ \qquad
(b) Finance charge $=\$$
11) Given the matrices A and B, perform the indicated operations or state that it's not possible. If it's not possible, explain why.
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \quad B=\left[\begin{array}{c}-4 \\ 7\end{array}\right] \quad$ and $C=\left[\begin{array}{cc}-2 & 7 \\ 0 & 1\end{array}\right]$
(a) $A+2 \mathrm{C}$
(b) $A B$

$$
A+2 \mathrm{C}=
$$

\qquad
(c) $B C$

$$
A B=
$$

\qquad

$$
B C=
$$

12) Solve the following system of equations using either Gauss-Jordan elimination, matrix reduction or an inverse matrix.

$$
\begin{gathered}
x+3 z=-2 \\
2 x+y-z=3 \\
-3 y+8 z=5
\end{gathered}
$$

13) Maximize the objective function $P=x+2 y$ subject to the constraints:

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& x+y \leq 8 \\
& x+4 y \leq 20
\end{aligned}
$$

Maximum value of $P=$ \qquad
at the point \qquad

