Name _____

Instructions:

- g Show all work as partial credit will be given where appropriate.
- 背 If no work is shown, there may be no credit given.
- All final answers should be written in the space provided and in simplified form.

DO <u>NOT</u> WRITE IN THIS TABLE!!! (It is for grading purposes.)

Grade:	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	

Total

1) Find all solutions to the following equation and inequality. (a) |3x+8| < 2

Answer 1a:

(b) |2-3x|=-2

Answer 1b:

2) The monthly revenue of a company is given by $R(p)=900 p-8 p^2$ where p is the price in dollars of the product manufactured. At what price will the revenue be \$20,000 if the price must be greater than \$50?

Answer 2: _____

- 3) Let $f(x) = \sqrt{x}$.
 - (a) Let $g(x)=\sqrt{x-3}+2$. Then, g(x) has the same shape as f(x), but it's translated (aka shifted). Answer the following questions regarding g(x)(compared to f(x)).

g(x) is shifted _____ units to the left or right (circle one) and it's shifted _____ units up or down (circle one).

(b) Now, let $h(x) = \sqrt{-x}$. Then, h(x) is a reflection of f(x) about the

x-axis or y-axis or neither axis (circle one).

4) For the following functions, answer the specified questions. $f(x)=x^3+x$ and $g(x)=\sqrt{x-1}$

(a) What is the domain of g(x)?

(b) $(f \circ g)(17) =$ _____

(c)
$$g^{-1}(x) =$$

(d)
$$(f-g)(2) =$$

5) Find the x- and y-intercepts and the vertex of $f(x)=x^2+4x-5$ algebraically. Use this information to sketch a graph of f(x).

x-intercept(s):

y-intercept: _____

vertex:

6) Suppose that for a product A, the demand equation is $p = \frac{-1}{90}q + 10$ and

the supply equation is 150 p-q=300 where q is the number of units sold per week and p is the price per unit. Solve the system of equations to find the point of equilibrium.

Point of equilibrium _____

7) Solve for x. (a) $\log_4(x-2) = -2$

(b) $7^{2x+4}-3=11$

x =_____

(c) $\log_3 x + \log_3(3x) = 3$

x =_____

x =_____

8) Write each expression in terms of $\ln x$, $\ln y$, $\ln z$, and $\ln w$.

(a)
$$\ln\left(\frac{x^3 y^2 z^4}{w^5}\right) =$$

(b)
$$\ln\left(\left(\frac{1}{w^2}\right)^{-3}\sqrt{\frac{yz}{z^3}}\right) =$$

9) A trust fund is set up for a girl when she is born. How much must the single payment be if the trust fund is to be worth \$30,000 in 18 years? Assume the interest rate is 6% compounded monthly.

Single Payment = \$ _____

- 10) Suppose you take out an auto loan for \$8,500 at 6% interest compounded monthly for five years.(a) What is the monthly payment?(b) How much is the finance charge?

(a) Payment = \$ _____

(b) Finance charge = \$_____

11) Given the matrices A and B, perform the indicated operations or state that it's not possible. If it's not possible, explain why.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -4 \\ 7 \end{bmatrix} \text{ and } C = \begin{bmatrix} -2 & 7 \\ 0 & 1 \end{bmatrix}$$

(a) $A + 2C$

(b) *AB*

A+2C =_____

(c) *BC*

AB = _____

12) Solve the following system of equations using either Gauss-Jordan elimination, matrix reduction or an inverse matrix.

x+3z=-2 2x+y-z=3-3y+8z=5

Solution:

13) Maximize the objective function P = x + 2y subject to the constraints:

 $x \ge 0$ $y \ge 0$ $x + y \le 8$ $x + 4y \le 20$

Maximum value of P = _____

at the point _____