Math1090 Final Exam

Fall， 2006
Name \qquad

Instructions：
費 Show all work as partial credit will be given where appropriate．
貫 If no work is shown，there may be no credit given．
貫 All final answers should be written in the space provided and in simplified form．

DO NOT WRITE IN THIS TABLE！！！
（It is for grading purposes．）
Grade：

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

Total \qquad

1) Find all solutions to the following equation and inequality.
(a) $|3 x+2|>20$

Answer 1a: \qquad
(b) $|-2 x+6|=|3 x+5|$

Answer 1b:
2) The Cordova Company sells bicycles. They pay $\$ 164$ for each bicycle and have monthly fixed costs of $\$ 5500$. If they sell every bicycle for $\$ 185$, how many bicycles do they need to sell each month to have a profit of at least \$5000?

Answer 2: \qquad
3) Solve for $x . \quad x^{2}+3=4 x$

Answer 3:
4) For the following functions, answer the specified questions.

$$
f(x)=x^{2}-1 \quad g(x)=2 \mathrm{x}-1
$$

(a) What is the domain of $\left(\frac{g}{f}\right)(x)$?
(b) $(f \circ g)(x)=$ \qquad
(c) $g^{-1}(x)=$ \qquad
(d) $(f-g)(x)=$
5) Find the x - and y -intercepts and the vertex of $f(x)=2 \mathrm{x}^{2}-4 \mathrm{x}-6$ algebraically. Use this information to sketch a graph of $f(x)$.

x-intercept(s): \qquad
y-intercept: \qquad
vertex: \qquad
6) A gardener has two fertilizers that contain different concentrations of nitrogen. One is 7% nitrogen and the other is 13% nitrogen. How many pounds of each should she mix together to obtain 27 pounds of 9\% concentration?
\# pounds of 7\% nitrogen fertilizer
\# pounds of 13% nitrogen fertilizer
\qquad
\qquad
7) Solve for x.
(a) $\log _{2} 32=x$
(b) $27^{x-2}=9^{3 x+9}$

$$
x=
$$

$$
x=
$$

(c) $\log _{10} 2 x+\log _{10}(x-5)=2$
\qquad

$$
x=
$$

8) Suppose that $\$ 2000$ is put into an account earning 6% interest compounded quarterly. How many years will it take for the balance in the account to reach \$3000?

Answer 8:
9) You are buying a $\$ 220,000$ house with a down payment of $\$ 25,000$. If the interest rate is 6%, compounded monthly, determine the size of the monthly payments (at the end of the month) you must make over the next 30 years to pay off the house.

Monthly Payment = \$
10) Mr. Johnson has two debts that he needs to pay off. The first is $\$ 5000$ for his student loans and it is due in 4 years. The second debt is $\$ 3000$ for his purebred cat, due in 5 years. If Mr. Johnson wants to pay off both debts with a single payment in two years, how much will his payment be, assuming an interest rate of 9% compounded quarterly?

Payment = \$
11) Given the matrices A and B, perform the indicated operations or state that it's not possible. If it's not possible, explain why.
$A=\left[\begin{array}{cc}1 & 3 \\ -2 & 2 \\ 4 & 1\end{array}\right] \quad B=\left[\begin{array}{cccc}0 & 2 & 1 & -1 \\ 3 & 0 & 4 & 2\end{array}\right] \quad C=\left[\begin{array}{cccc}4 & -5 & 6 & 0 \\ 7 & 3 & 1 & 4\end{array}\right]$
(a) $A B$
(b) $B A$

$$
A B=
$$

\qquad

$$
B A=
$$

(c) $2 \mathrm{~B}-\mathrm{C}$
$2 \mathrm{~B}-\mathrm{C}=$
12) Follow the steps below to solve the system of linear equations using an inverse matrix.

$$
\begin{aligned}
& 2 x-5 y=2 \\
& -x+3 y=1
\end{aligned}
$$

(a) Write the system above as a matrix equation, i.e. In the form $\boldsymbol{A}\left[\begin{array}{l}x \\ y\end{array}\right]=\boldsymbol{b}$.
(b) Find A^{-1}.

$$
A^{-1}=
$$

\qquad
(c) Use A^{-1} to solve the system of equations.

Solution:
13) Maximize the objective function $P=x+2 y$ subject to the constraints:

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& x+y \geq 5 \\
& x+y \leq 12 \\
& x \leq 10
\end{aligned}
$$

Maximum value of $P=$ \qquad
at the point \qquad

