Study Guide for Exam 3

Math 1100-4
Integration Formulas: Let C represent the constant of integration:

- $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ for $n \neq-1$.
- $\int c u(x) d x=c \int u(x) d x$ if c is a constant.
- $\int(u(x) \pm v(x)) d x=\int u(x) d x \pm \int v(x) d x$ if $u(x)$ and $v(x)$ are integrable functions.
- $\int 1 d x=x+C$.
- $\int 0 d x=C$.
- $\int u^{\prime}(x)[u(x)]^{n} d x=\frac{[u(x)]^{n+1}}{n+1}+C$ for $n \neq-1$.
- $\int u^{\prime}(x) e^{u(x)} d x=e^{u(x)}+C$.
- $\int \frac{u^{\prime}(x)}{u(x)} d x=\ln |u(x)|+C$.

Other Formulas to Know:

- $\sum_{i=1}^{n} 1=n$.
- $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
- $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
- Area under $f(x)$ from $x=a$ to $x=b$ with a right-hand approximation if $f(x) \geq 0$ on $[a, b]$: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{b-a}{n}\right) f\left(a+i \frac{b-a}{n}\right)$.
- Area between $f(x)$ and $g(x)$ from $x=a$ to $x=b: \int_{a}^{b}(f(x)-g(x)) d x$ if $f(x) \geq$ $g(x)$ on $[a, b]$.
- Average value of $f(x)$ from $x=a$ to $x=b: \frac{1}{b-a} \int_{a}^{b} f(x) d x$.
- Total Income from $t=0$ to $t=k$ for the rate of continuous income flow $f(t)$: $T I=\int_{0}^{k} f(t) d t$.
- Present Value from $t=0$ to $t=k$ for the rate of continuous income flow $f(t)$ with an interest rate of r, compounded continuously: $P V=\int_{0}^{k} f(t) e^{-r t} d t$.
- Future Value from $t=0$ to $t=k$ for the rate of continuous income flow $f(t)$ with an interest rate of r, compounded continuously: $F V=e^{r k} \int_{0}^{k} f(t) e^{-r t} d t=$ $e^{r k} \cdot P V$.
- $\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$.
- $\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x$.

Section 12.1

- Know the definition of the (indefinite) integral.
- Be able to integrate polynomials, radicals, and fractions if they can be written as the sum of different powers of x, where none of the exponents are -1 . Remember to include the " $+C$."
- Given the marginal revenue function, be able to calculate the Revenue function, using that $R(0)=0$. (Note: This does not mean that the constant of integration $C=0$, in general.)

Section 12.2

- Be able to integrate functions of the form $u^{\prime}(x)[u(x)]^{n}$ for $n \neq-1$, and recognize when to multiply and divide by a constant to make $u^{\prime}(x)$ appear within the integral sign. Remember to include the " $+C$."

Section 12.3

- Be able to integrate exponential functions. Remember to include the " $+C$."
- Also be able to integrate functions of the form $\frac{u^{\prime}(x)}{u(x)}=u^{\prime}(x) \cdot[u(x)]^{-1}$. Remember to include the " $+C$."

Section 12.4

- When given Marginal Cost, Marginal Revenue, and Marginal Profit functions, be able to find the Cost, Revenue, and Profit functions, respectively. Also be able to calculate the constant of integration C using the given information.

Section 13.1

- Be able to interpret and calculate a sum using Sigma notation.
- Know how to approximate the area under a curve using a given number of subintervals with a right-hand approximation.
- Be able to calculate the exact area under a curve by first approximating it with n rectangles, then taking $n \rightarrow \infty$ using a right-hand approximation.

Section 13.2

- Be able to calculate definite integrals using the "shortcuts" from this section.
- Know how to use the definite integral to interpret word problems when given the instantaneous rate of change of a function, and asked for the exact change of the function on a given interval.

Section 13.3

- Be able to find the exact area between two curves on a given interval.
- Also be able to find the area bounded between two curves when no interval is given. Recall that this involves finding the x-values where the two curves intersect.
- Know how to calculate the average value of a function on a given interval.

Section 13.4

- When given a rate of continuous income flow, be able to calculate the Total Income for a given period of time.
- When given a rate of continuous income flow and an interest rate with interest that is compounded continuously, be able to calculate the Present Value and Future Value for a given period of time.

Section 13.7

- Be able to calculate definite integrals with at least one infinite bound, and determine whether they converge or diverge.

Section 14.1

- Be able to evaluate functions of 2 or more variables.
- Know how to find the domain of functions of 2 or more variables.

Section 14.2

- Be able to find partial derivatives of functions of 2 or more variables.
- Know how to calculate second partial derivatives of functions of multiple variables.

Sample Problems

1. Calculate each of the following integrals:
(a) $\int\left(x^{2}+\frac{3}{x^{4}}-\sqrt[7]{x}\right) d x$
(b) $\int t\left(4 t^{2}-5\right)^{7} d t$
(c) $\int \frac{x^{3}+1}{\left(x^{4}+4 x\right)^{8}} d x$
(d) $\int \frac{x^{3}+1}{x^{4}+4 x} d x$
(e) $\int y^{3} e^{3 y^{4}-2} d y$
(f) $\int \frac{d x}{x(\ln x)^{3}}$
(g) $\int e^{\ln z^{5}} d z$
(h) $\int \ln e^{-5 x^{3} / 2+6} d x$
2. The marginal revenue function for a product is $\overline{M R}=\frac{x}{\sqrt{x^{2}+25}}$. Find the total revenue function.
3. \#39-51 odds from Section 12.1.
4. \#43-51 odds from Section 12.2.
5. \#43-51 odds from Section 12.3.
6. \#1-11 odds from Section 12.4.
7. Calculate each of the following sums:
(a) $\sum_{k=1}^{5} 2 k$
(b) $\sum_{i=1}^{4} i^{3}$
(c) $\sum_{j=2}^{3}\left(j^{2}-2\right)$
8. Approximate the area under $y=x^{2}+3$ from $x=1$ to $x=2$ using 4 subintervals and a right-hand approximation.
9. Calculate the exact area under the curve $y=x^{2}+3$ from $x=1$ to $x=2$ using the right-hand approximation.
10. Calculate each of the following definite integrals:
(a) $\int_{2}^{5}\left(x^{2}-3 x+5\right) d x$
(b) $\int_{-2}^{1} \frac{d x}{(x-3)^{2}}$
(c) $\int_{0}^{\sqrt{\ln 5}} x e^{x^{2}} d x$
(d) $\int_{3}^{4} \frac{d x}{x}$
(e) $\int_{0}^{\infty} x e^{-x^{2}} d x$
(f) $\int_{-\infty}^{-2} \frac{d x}{x^{3}}$
(g) $\int_{2}^{\infty} \frac{d x}{x \ln x}$
(h) $\int_{1}^{\infty} \frac{d x}{\sqrt{x}}$
11. Calculate the area bounded by the following sets of curves:
(a) $f(x)=2 x^{2}, g(x)=-x-1, x=1$, and $x=4$.
(b) $f(x)=x^{2}-8$ and $g(x)=-x^{2}$.
(c) $f(x)=16 x$ and $g(x)=x^{3}$.
12. Calculate the average value of $f(x)=6 x^{2}-4 x+5$ on the interval $[1,4]$.
13. \#1-15 odds from Section 13.4.
14. Given the function $f(x, y)=\ln (x y)+x^{2} y-3 x y$, find each of the following:
(a) $f\left(\frac{1}{2}, 2\right)$
(b) $f\left(-e,-e^{2}\right)$
(c) $f(0,3)$
(d) $\frac{\partial}{\partial x} f(x, y)$
(e) $\frac{\partial}{\partial y} f(x, y)$
(f) $\frac{\partial^{2}}{\partial x^{2}} f(x, y)$
(g) $\frac{\partial^{2}}{\partial y^{2}} f(x, y)$
(h) $\frac{\partial^{2}}{\partial x \partial y} f(x, y)$
(i) $\frac{\partial^{2}}{\partial y \partial x} f(x, y)$
(j) What is the domain of f ?
