Section 9.9, Applications of Derivatives in Business and Economics

If $R=R(x)$ is the revenue function for a product, then the marginal revenue function is $\overline{M R}=R^{\prime}(x)$.

Example

The total revenue function for a kind of t-shirt is $R(x)=16 x-0.01 x^{2}$, where R is in dollars and x is the number of t -shirts sold. Find the following:

1. Find the revenue when 40 units are sold.

$$
R(40)=16 \cdot 40-0.01 \cdot 40^{2}=624
$$

2. Find the marginal revenue function.

$$
\overline{M R}=R^{\prime}(x)=16-0.02 x
$$

3. Find the marginal revenue at $x=40$. What does the predict about the sale of the next unit?

$$
R^{\prime}(40)=16-0.02 \cdot 40=15.20
$$

Since the derivative represents the rate of change, the sale of the next t-shirt will increase revenue by approximately $\$ 15.20$.
4. Find $R(41)-R(40)$. What does this quantity represent?

$$
R(41)-R(40)=16 \cdot 41-0.01 \cdot 41^{2}-624=639.19-624=15.19
$$

This is the exact change in revenue between the 40th and 41st t-shirts.
If $C=C(x)$ is the cost function for a product, then its derivative, $\overline{M C}=C^{\prime}(x)$, is the marginal cost function.

Example

Let $C(x)=4 x^{2}-16 x+40$. Find the marginal cost.
$\overline{M C}=8 x-16$

If $P=P(x)$ is the profit function for a product, then its derivative, $\overline{M P}=P^{\prime}(x)$, is called the marginal profit function.

Example

Let $P(x)=7 x-45$. Find the marginal profit.

$$
\overline{M P}=7
$$

Note that this means that the profit increases by $\$ 7$ for every unit sold.
Since $P=R-C, \overline{M P}=\overline{M R}-\overline{M C}$ when the functions represent the profit, revenue, and cost of the same product.

