Section 9.8, Higher-Order Derivatives

1 Second Derivatives

If $y=f(x)$ is a function, $f^{\prime}(x)$ is the first derivative of the f. The derivative of the first derivative is called the second derivative, and is denoted $f^{\prime \prime}(x), y^{\prime \prime}$, or $\frac{d^{2} y}{d x^{2}}$.

Examples

1. Find $\frac{d^{2} y}{d x^{2}}$ if $y=4 x^{3}-\sqrt[5]{x^{4}}=4 x^{3}-x^{4 / 5}$.

To find the second derivative, we need the first derivative, and then we will calculate the derivative of that.

$$
\begin{aligned}
& \frac{d y}{d x}=12 x^{2}-\frac{4}{5} x^{-1 / 5} \\
& \frac{d^{2} y}{d x^{2}}=24 x+\frac{4}{25} x^{-6 / 5}
\end{aligned}
$$

2. Find $f^{\prime \prime}(x)$ for $f(x)=2 x^{5}-4 x^{2}+2 x-1$.

$$
\begin{aligned}
& f^{\prime}(x)=10 x^{4}-8 x+2 \\
& f^{\prime \prime}(x)=40 x^{3}-8
\end{aligned}
$$

3. Calculate $g^{\prime \prime}(x)$ if $g(x)=2-\frac{4}{x^{3}}=2-4 x^{-3}$.

$$
\begin{aligned}
& g^{\prime}(x)=12 x^{-4} \\
& g^{\prime \prime}(x)=-48 x^{-5}
\end{aligned}
$$

2 Third Derivatives

The third derivative of a function $y=f(x)$ is the derivative of the second derivative, and is denoted $f^{\prime \prime \prime}(x), y^{\prime \prime \prime}$, or $\frac{d^{3} y}{d x^{3}}$.

Examples

1. Let $f(x)=3 x^{7}-9 x^{5}+4 x^{4}-2$. Calculate $f^{\prime \prime \prime}(x)$.

To find the third derivative, we first need the second derivative.

$$
\begin{aligned}
& f^{\prime}(x)=21 x^{6}-45 x^{4}+16 x^{3} \\
& f^{\prime \prime}(x)=126 x^{5}-180 x^{3}+48 x^{2} \\
& f^{\prime \prime \prime}(x)=630 x^{4}-540 x^{2}+96 x
\end{aligned}
$$

2. $g(x)=\frac{1}{x^{3}}=x^{-3}$. Find $g^{\prime \prime \prime}(x)$.

$$
\begin{aligned}
& g^{\prime}(x)=-3 x^{-4} \\
& g^{\prime \prime}(x)=12 x^{-5} \\
& g^{\prime \prime \prime}(x)=-60 x^{-6}
\end{aligned}
$$

Likewise, we can define fourth, fifth, etc. derivatives. Normally, the "prime" notation stops after the third derivative, due to the difficulty in accurately counting large numbers of apostrophes.

3 Application: Marginal Revenue

Example

Find the rate of change of the marginal revenue, $\overline{M R}$, when $x=20$ if the revenue function is $R(x)=140 x+x^{2}-0.002 x^{3}$ when x units are sold.

Since the $\overline{M R}$ is the first derivative of R, to find the rate at which $\overline{M R}$ is changing, we need the second derivative of R. Then, we will calculate $R^{\prime \prime}(20)$.

$$
\begin{aligned}
\overline{M R}= & R^{\prime}(x)=140+2 x-0.006 x^{2} \\
& R^{\prime \prime}(x)=2-0.012 x \\
& R^{\prime \prime}(20)=2-0.012 \cdot 20=1.76
\end{aligned}
$$

