Section 9.4, Derivative Formulas

In this section and the few that follow, we will learn several "shortcut" rules to calculate derivatives. (Note: The limit definition of the derivative may still show up now and again throughout the semester, such as on exams and when we consider more complicated functions.)
Power Rule: If $f(x)=x^{n}$, for any real number n, then $f^{\prime}(x)=n x^{n-1}$.

Examples

Find derivatives for each of the following functions:

1. $f(x)=x^{2}$

Here $n=2$, so $f^{\prime}(x)=2 x^{2-1}=2 x$.
2. $f(x)=x$

Rewrite the function as $f(x)=x^{1}$, so $f^{\prime}(x)=1 x^{0}=1\left(\right.$ since $\left.x^{0}=1\right)$.
3. $f(x)=\frac{1}{x}$

We can rewrite this as $f(x)=x^{-1}$, so $f^{\prime}(x)=-1 \cdot x^{-1-1}=-x^{-2}$. (We will learn how to find derivatives of more complicated fractions in the next section.)
4. $g(x)=\sqrt{x}$

We can rewrite this as $g(x)=x^{1 / 2}$, so $g^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$.
Constant Function Rule: If $f(x)=c$, where c is a constant, then $f^{\prime}(x)=0$.

Example

Let $y=9$. Then, $y^{\prime}=0$.
Constant Coefficient Rule: If $f(x)=c \cdot g(x)$, where c is a constant, then $f^{\prime}(x)=c \cdot g^{\prime}(x)$.

Example

Assume that $h(z)=2 z^{4}$. Then, $h^{\prime}(z)=2 \cdot 4 z^{3}=8 z^{3}$, by using the power rule for the z^{4} part.
Sum and Difference Rules: If $f(x)=u(x) \pm v(x)$, then $f^{\prime}(x)=u^{\prime}(x) \pm v^{\prime}(x)$

Examples

1. Find the derivatives of each of the following functions:
(a) $f(x)=2 x^{3}+2 x-4$

Combining all of the above rules, $f^{\prime}(x)=2 \cdot 3 x^{2}+2 \cdot 1+0=6 x^{2}+2$
(b) $g(x)=7 x^{8}-\frac{8}{x^{3}}+2=7 x^{8}-8 x^{-3}+2$

$$
g^{\prime}(x)=7 \cdot 8 x^{7}-8(-3) x^{-4}+0=56 x^{7}+24 x^{-4}
$$

2. Find the point(s) at which the graph of $f(x)=4 x^{3}-3 x+4$ has a horizontal tangent line.

Recall from Algebra that horizontal lines have a slope of 0 . From the last section, we know that the slope of the tangent line at a given point equals the derivative at that point. So, this question is asking us to find the points where the x-values that give $f^{\prime}(x)=0$.

First, we must find the derivative of the function:

$$
f^{\prime}(x)=12 x^{2}-3
$$

Now, we set $f^{\prime}(x)=0$ and solve for x :

$$
\begin{aligned}
& 0=12 x^{2}-3=3\left(4 x^{2}-1\right)=3(2 x-1)(2 x+1) \\
& x=\frac{1}{2},-\frac{1}{2}
\end{aligned}
$$

Since we were asked for points (as opposed to just the x-values), we still need to find the value of the function (not the derivative) at the x-values we just found:

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =3 \\
f\left(-\frac{1}{2}\right) & =5
\end{aligned}
$$

so the points are $\left(\frac{1}{2}, 3\right)$ and $\left(-\frac{1}{2}, 5\right)$.

