Section 9.1, Limits

Let $f(x)$ be a function defined on an open interval containing $x=c$, except perhaps at c. Then,

$$
\lim _{x \rightarrow c} f(x)=L
$$

is read "the limit of $f(x)$ as x approaches c equals L." The number L exists if we can make values of $f(x)$ as close to L as we desire by choosing values of x sufficiently close to c. When $f(x)$ does not approach a single finite value L as x approaches c, we say that the limit does not exits (or "DNE").

There is a table with useful properties of limits on page 584 of your textbook.

Examples

Find the requested limits for the following graphs. (The blue line in each graph represents $y=f(x)$.)

1. $\lim _{x \rightarrow 2} f(x)=3$, since the y-value of the graph approaches 3 as x approaches 2 .

2. $\lim _{x \rightarrow 2} f(x)=3$, since the y-value of the graph approaches 3 as x approaches 2 (even though this isn't the value of the function at $x=2$).

3. $\lim _{x \rightarrow 2} f(x)$ DNE, since the function does not approach just one value as x approaches 2 .

1 Limits for Polynomials and Rational Functions

If $f(x)$ is a polynomial $\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right.$ where the a_{i} 's are constant $)$, then $\lim _{x \rightarrow c} f(x)=f(c)$ for any real number c.

Examples

1. $\lim _{x \rightarrow 2} x^{2}-2 x+3=2^{2}-2 \cdot 2+3=3$
2. $\lim _{x \rightarrow 3} x+4=3+4=7$

If two functions, f and g, are both polynomial functions, then $h(x)=\frac{f(x)}{g(x)}$ is called a rational function. To find limits for rational functions, there are three possible scenarios:

1. If $g(c) \neq 0$, then $\lim _{x \rightarrow c} h(x)=\frac{f(c)}{g(c)}$.
2. If $g(c)=0$ and $f(c) \neq 0$, then $\lim _{x \rightarrow c} h(x)$ DNE (since we cannot divide by zero). The graph of $h(x)$ will have a vertical asymptote at $x=c$.
3. If $g(c)=0$ and $f(c)=0$, then $\lim _{x \rightarrow c} h(x)$ has the form $\frac{0}{0}$, which is called the $\frac{0}{0}$ indeterminate form. In order to evaluate limits like this, we must first reduce the fraction $\frac{f(x)}{g(x)}$, then try to evaluate it again (The fraction will always reduce in this situation for rational functions, and it might even reduce to a polynomial function, which is simpler to evaluate.).

Examples

1. $\lim _{x \rightarrow 3} \frac{x-2}{x+4}=\frac{3-2}{3+4}=\frac{1}{7}$, since the denominator is not zero at $x=3$.
2. $\lim _{x \rightarrow 3} \frac{x^{2}+2 x+9}{x-3}$ DNE, since the denominator is zero at $x=3$, but the numerator is not zero.
3. $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+5)}{x-5}=\lim _{x \rightarrow 5} x+5=5+5=10$. This was the $\frac{0}{0}$ indeterminate form, so we first reduced the fraction, then evaluated the simpler limit.

2 One-Sided Limits

Sometimes, we only need information on what happens when the x-value approaches a particular value c from either the left or the right side (as opposed to considering what happens as x approaches c from both sides at once, as we have looked at thus far).
The limit from the right for a function f is denoted

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

and means that the values of $f(x)$ approach L as x approaches c from the right (the "positive" side).
The limit from the left for a function f is denoted

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

and means that the values of $f(x)$ approach L as x approaches c from the left (the "negative" side).

Examples

Consider the following graph:

1. $\lim _{x \rightarrow 2^{+}} f(x)=1$, since $f(x)$ approaches the value 1 when x approaches 2 from the right.
2. $\lim _{x \rightarrow 2^{-}} f(x)=3$, since $f(x)$ approaches the value 3 when x approaches 2 from the left.

Note that if, for a function f and a real number $c, \lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=L$ for some number L, then $\lim _{x \rightarrow c} f(x)$ exists and is also equal to L.

