Section 14.2, Partial Differentiation

1 Partial Derivatives

If $z=f(x, y)$, then the partial derivative of $f(x, y)$ with respect to x (and many different variations on notation) is

$$
z_{x}=f_{x}(x, y)=\frac{\partial z}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

The partial derivative of $f(x, y)$ with respect to y (and notation) is

$$
z_{y}=f_{y}(x, y)=\frac{\partial z}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Examples

1. Let $f(x, y)=2 x^{2} y+e^{x}+\ln y$.
(a) Find $\frac{\partial f}{\partial x}$

From the definition, note that this is just the "regular" derivative, if we treat y as a constant, so we can use the power rule and the derivative of exponential functions to get $\frac{\partial f}{\partial x}=4 x y+e^{x}$.
(b) Find $\frac{\partial f}{\partial y}$

This time, we will treat x as a constant, so $\frac{\partial f}{\partial y}=2 x^{2}+\frac{1}{y}$.
2. We also did $\# 14$ from the book as an example.

2 Second Partial Derivatives

As with "normal" derivatives, we can take the second derivative of a function of two variables. As with first partial derivatives, you will be told whether you need to differentiate with respect to x or y (it is possible to combine both). The notation is:
$z_{x x}=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)$ (take the partial derivative with respect to x twice)
$z_{y y}=\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)$ (take the partial derivative with respect to y twice)
$z_{x y}=\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)$ (take the partial derivative with respect to x, then y)
$z_{y x}=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)$ (take the partial derivative with respect to y, then x)

1. Let $f(x, y)=2 x^{2} y+3 x y+\ln (x y)+y e^{x}$. Find $f_{x x}, f_{y y}, f_{x y}$, and $f_{y x}$.

We will need the first partial derivatives to start, so

$$
\begin{aligned}
f_{x}(x, y) & =4 x y+3 y+\frac{y}{x y}+y e^{x}=4 x y+3 y+x^{-1}+y e^{x} \\
f_{y}(x, y) & =2 x^{2}+3 x+y^{-1}+e^{x}
\end{aligned}
$$

So, the requested second partial derivatives are:

$$
\begin{aligned}
& f_{x x}(x, y)=4 y-x^{-2}+y e^{x} \\
& f_{y y}(x, y)=-y^{-2} \\
& f_{x y}(x, y)=4 x+3+e^{x} \\
& f_{y x}(x, y)=4 x+3+e^{x}
\end{aligned}
$$

Note that $f_{x y}=f_{y x}$. This will be the case for most functions, but there are some exceptions, such as when the second partial derivatives are not continuous.
2. For $\# 40$, the notation means to evaluate the second partial derivative, $z_{x y}$ at the point $(1,2)$.

