Section 12.1, The Indefinite Integral

1 Integrals

Given a derivative, $f^{\prime}(x)$, the process of finding the function $f(x)$ is called antidifferentiation or integration. The most general function $f(x)$ is called the integral or indefinite integral of $f^{\prime}(x)$, and we write $\int f^{\prime}(x) d x=f(x)$.

Examples

Find each of the following:

1. $\int 4 x^{3} d x=x^{4}+C$, where C represents a general constant.
2. $\int x^{6} d x=\frac{x^{7}}{7}+C$

Powers of x Formula: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ for $n \neq-1$.

Examples

Calculate and simplify each of the following:

1. $\int x^{2} d x=\frac{x^{3}}{3}+C$
2. $\int \sqrt{x} d x=\int x^{1 / 2} d x=\frac{2 x^{3 / 2}}{3}+C$
3. $\int \frac{1}{x^{3}} d x=\int x^{-3} d x=\frac{x^{-2}}{-2}+C=-\frac{1}{2 x^{2}}+C$

2 Properties

There are many general properties of integrals. Let c and C represent constants:

1. $\int c u(x) d x=c \int u(x) d x$
2. $\int(u(x) \pm \nu(x)) d x=\int u(x) d x \pm \int \nu(x) d x$
3. $\int 1 d x=x+C$
4. $\int 0 d x=C$

Examples

1. $\int\left(3+2 x^{2}\right) d x=3 x+\frac{2}{3} x^{3}+C$
2. $\int\left(4-\frac{1}{\sqrt[3]{x^{2}}}\right) d x=\int\left(4-x^{-2 / 3}\right) d x=4 x-3 x^{1 / 3}+C$
3. $\int\left(\frac{3}{x^{9}}-\frac{16}{\sqrt[5]{x}}\right) d x=\int\left(3 x^{-9}-16 x^{-1 / 5}\right) d x=-\frac{3}{8} x^{-8}-20 x^{4 / 5}+C$
4. The marginal revenue for a product is $\overline{M R}=-0.5 x+60$. Find $R(x)$.
$R(x)=\int(-0.5 x+60) d x=-0.25 x^{2}+60 x+C$. Using that $R(0)=0$, we see that $C=0$, so $R(x)=-0.25 x^{2}+60 x$.
