Section 11.5, Applications in Business and Economics

Here we will look at the relationship between raising the cost of a product and the resulting decrease in demand. The Elasticity of Demand for a product on an interval is found by dividing the percent change of demand by the percent change in price. So,

$$
\eta=-\frac{\text { change in quantity demanded }}{\text { original quantity demanded }} \div \frac{\text { change in price }}{\text { original price }}
$$

Rearranging this, we get:

$$
\eta=-\frac{\text { original price }}{\text { original quantity demanded }} \div \frac{\text { change in price }}{\text { change in quantity demanded }}
$$

We will be looking at the value of the elasticity of demand at a given point $\left(q_{A}, p_{A}\right)$ instead of on an interval. Taking the interval to length zero in the above equation, we get that:

$$
\eta=-\frac{p}{q} \div\left.\frac{d p}{d q}\right|_{\left(q_{A}, p_{A}\right)}=-\left.\frac{p}{q} \cdot \frac{d q}{d p}\right|_{\left(q_{A}, p_{A}\right)}
$$

Then, the value η will fall into one of three categories:

1. If $\eta>1$, the demand is elastic, and the percent decrease in demand is greater than the corresponding percent increase in price. If the price increases, revenue will decrease.
2. If $\eta<1$, the demand is inelastic, and the percent decrease in demand is less than the corresponding percent increase in price. If the price increases, revenue will increase.
3. If $\eta=1$, the demand is unitary elastic, and the percent decrease in demand is approximately equal to the corresponding percent increase in price. A change in price will not change the revenue. Revenue is optimized at this point.

Examples

We did \#1 and \#3 from the book, as well as setting up \#9.

