Section 11.3, Implicit Differentiation

So far, we have looked at equations involving y 's and x 's where we can solve for y in terms of x. Then, it is called an explicit function of x. However, there are equations involving y 's and x 's cannot be solved for y. In this case, y is called an implicit function of x. Sometimes, we still want to know the rate at which y changes as x changes (that is, $\frac{d y}{d x}$).
For example, the equation of a circle of radius 2 centered at the origin is $x^{2}+y^{2}=4$. If we solve this for y, we get $y= \pm \sqrt{4-x^{2}}$, which is not a function of x.
To find $\frac{d y}{d x}$ when y is an implicit function of x, we will need a technique called implicit differentiation. The steps needed for implicit differentiation for a given equation are:

1. Differentiate both sides of the equation with respect to x. Remember that the chain rule applies, and that the derivative of y with respect to x is $\frac{d y}{d x}$.
2. Solve for $\frac{d y}{d x}$.

Examples

1. Find $\frac{d y}{d x}$ for the following equations:
(a) $2 x^{2}+3 y+7=0$

Taking the derivative of both sides with respect to x, we need the power rule for the first term, and remember that the derivative of y is $\frac{d y}{d x}$. Then, we solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
4 x+3 \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{4 x}{3}
\end{aligned}
$$

In this example, we actually could have solved for y, then taking the derivative the "normal" way. This method was just used here for the sake of practice.
(b) $2 x^{3}-7 y^{2}+x=9$

$$
\begin{aligned}
6 x^{2}-14 y \cdot \frac{d y}{d x}+1 & =0 \\
14 y \cdot \frac{d y}{d x} & =6 x^{2}+1 \\
\frac{d y}{d x} & =\frac{6 x^{2}+1}{14 y}
\end{aligned}
$$

Again, the chain rule was used to get the $\frac{d y}{d x}$ when the derivative of y was needed.
(c) $4 x y+7 x^{2}=0$

Here, we have a product in the first term, so the product rule will also be needed.

$$
\begin{aligned}
4 x \frac{d y}{d x}+4 y+14 x & =0 \\
4 x \frac{d y}{d x} & =-(4 y+14 x) \\
\frac{d y}{d x} & =-\frac{4 y+14 x}{4 x}=-\frac{2 y+7 x}{2 x}
\end{aligned}
$$

We also could have solved this one for y before taking a derivative. If we took that approach, our answer would have looked different at first glance, but in the end it would be the same.
(d) $3 x^{3} y^{4}=2 x^{2}-4 y$

$$
\begin{aligned}
3 x^{3} \cdot 4 y^{3} \cdot \frac{d y}{d x}+3 y^{4} \cdot 3 x^{2} & =4 x-4 \frac{d y}{d x} \\
12 x^{3} y^{3} \cdot \frac{d y}{d x}+9 x^{2} y^{4} & =4 x-4 \frac{d y}{d x} \\
\frac{d y}{d x}\left(12 x^{3} y^{3}+4\right) & =4 x-9 x^{2} y^{4} \\
\frac{d y}{d x} & =\frac{4 x-9 x^{2} y^{4}}{12 x^{3} y^{3}+4}
\end{aligned}
$$

(e) $(x+y)^{3}=2 x y$

Here, since we have a quantity raised to a power, we will need the general power rule:

$$
\begin{aligned}
3(x+y)^{2}\left(1+\frac{d y}{d x}\right) & =2 x \frac{d y}{d x}+2 y \\
\frac{d y}{d x}\left(3(x+y)^{2}-2 x\right) & =2 y-3(x+y)^{2} \\
\frac{d y}{d x} & =\frac{2 y-3(x+y)^{2}}{3(x+y)^{2}-2 x}
\end{aligned}
$$

2. Find $\frac{d y}{d x}$ at the point $\left(\frac{27}{4},-3\right)$ if $2 y^{2}-4 x+9=0$.

First, we will carry out implicit differentiation, then put in the given x-value and y-value:

$$
\begin{aligned}
4 y \frac{d y}{d x}-4 & =0 \\
\frac{d y}{d x} & =\frac{1}{y}
\end{aligned}
$$

At the given point, $\frac{d y}{d x}=-\frac{1}{3}$
3. Let p and q satisfy $p^{2} q=4 p-2$.
(a) Find $\frac{d p}{d q}$.

Here, we will treat p as y and q as x, so:

$$
\begin{aligned}
p^{2}+q \cdot 2 p \frac{d p}{d q} & =4 \frac{d p}{d q} \\
\frac{d p}{d q}(2 p q-4) & =-p^{2} \\
\frac{d p}{d q} & =-\frac{p^{2}}{2 p q-4}
\end{aligned}
$$

(b) Find $\frac{d q}{d p}$.

Note that $\frac{d p}{d q}$ and $\frac{d q}{d p}$ are reciprocals, so we only need to find:

$$
\frac{d q}{d p}=\frac{1}{\text { The answer to the previous part }}=-\frac{2 p q-4}{p^{2}}
$$

4. (\#56 from the book) Suppose that the number of mosquitoes N (in thousands) in a certain swampy area near a community is related to the number of pounds of insecticide x sprayed on the nesting area according to $N x-10 x+N=300$. Find the rate of change of N with respect to x when 49 pounds of insecticide is used.

In other words, we want to find $\frac{d N}{d x}$ when $x=49$. First, we will use implicit differentiation to find the needed rate of change:

$$
\begin{aligned}
N+x \frac{d N}{d x}-10+\frac{d N}{d x} & =0 \\
\frac{d N}{d x}(x+1) & =10-N \\
\frac{d N}{d x} & =\frac{10-N}{x+1}
\end{aligned}
$$

To evaluate this, we need both x and N (we only have x), so we will solve the original equation for N when $x=49$:

$$
\begin{aligned}
49 N-10 \cdot 49+N & =300 \\
50 N & =300+490=790 \\
N & =\frac{790}{50}=\frac{79}{5}
\end{aligned}
$$

Therefore,

$$
\frac{d N}{d x}=\frac{10-N}{x+1}=\frac{10-\frac{79}{5}}{49+1}=-\frac{29}{250}
$$

