Section 11.1, Derivatives of Logarithmic Functions

1 Quick Review of Logarithms

For a constant a with $a>0$ and $a \neq 1$, recall that for $x>0, y=\log _{a} x$ if $a^{y}=x$. For example, $\log _{2} 8=3$ since $2^{3}=8$ and $\log _{3} \frac{1}{3}=-1$ since $3^{-1}=\frac{1}{3}$.
$\log _{e} x$ is frequently denoted $\ln x$, and called the "natural logarithm." ($e \approx 2.71828$). $\log _{10} x$ is frequently denoted $\log x$, and is called the "common logarithm."

Properties of Logarithms:

1. $\log _{a} a^{x}=x$
2. $a^{\log _{a} x}=x$
3. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
4. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
5. $\log _{a} x^{n}=n \log _{a} x$
6. $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$. This is often called the "change-of-base formula."

Examples

1. Evaluate each of the following:
(a) $\log _{8} 64=2$
(b) $\log _{8} 4=\frac{2}{3}$
(c) $\log _{9} 3=\frac{1}{2}$
(d) $\log _{42} 1=0$
(e) $\log _{4} 0$ is undefined since we cannot take the logarithm of zero or negative numbers.
(f) $\log _{1} 7$ is undefined since the base cannot be one (or zero or negative numbers).
(g) $\log _{2} \frac{1}{4}=-2$
(h) $\log _{1 / 4} 64=-3$
2. Write each of the following using only one logarithm:
(a) $\log _{4} x+\log _{4}(x+2)-\log _{4}(x-2)=\log _{4} \frac{x(x+2)}{x-2}$
(b) $2 \log _{7} x-3 \log _{7}(x-1)+2=\log _{7} x^{2}-\log _{7}(x-1)^{3}+\log _{7} 49=\log _{7} \frac{49 x^{2}}{(x-1)^{3}}$
3. Write each of the following in terms of $\log _{5} a, \log _{5} b$, and $\log _{5} c$.
(a) $\log _{5} \frac{a b}{c}=\log _{5} a+\log _{5} b-\log _{5} c$
(b) $\log _{5} \sqrt{a c}=\frac{1}{2} \log _{5} a+\frac{1}{2} \log _{5} c$
(c) $\log _{5} \frac{a}{b^{2}}=\log _{5} a-2 \log _{5} b$
4. Solve $2^{x}=9$.

We can start by taking the logarithm of both sides. We can choose to use any base, as long as it's the same on both sides. Normally, you should choose either the based used in the
exponential part due to cancellation that will occur, or base e or 10 since they are frequently available on calculators. Here, I'll use base e.

$$
\begin{aligned}
\ln 2^{x} & =\ln 9 \\
x \ln 2 & =\ln 9 \\
x & =\frac{\ln 9}{\ln 2} \approx 3.1699
\end{aligned}
$$

5. $\$ 2000$ is invested into a bank account earning an APR of 3%, compounded monthly. How many years will it take for the investment to reach $\$ 3000$?

From compound interest equations, we know that for Y years,

$$
\begin{aligned}
3000 & =2000\left(1+\frac{.03}{12}\right)^{12 Y} \\
3000 & =2000 \cdot 1.0025^{12 Y} \\
1.5 & =1.0025^{12 Y} \\
\ln 1.5 & =\ln 1.0025^{12 Y} \\
\ln 1.5 & =12 Y \ln 1.0025 \\
Y & =\frac{\ln 1.5}{12 \ln 1.0025} \approx 13.53239
\end{aligned}
$$

2 Derivatives

If $y=\ln x$, then $y^{\prime}=\frac{1}{x}$. If $y=\ln g(x)$, then $y^{\prime}=\frac{g^{\prime}(x)}{g(x)}$ by the chain rule.

Examples

Find the derivative of each of the following:

1. $f(x)=5 \ln x$

$$
f^{\prime}(x)=5 \cdot \frac{1}{x}=\frac{5}{x}
$$

2. $f(x)=\ln \left(14 x^{5}\right)$

$$
f^{\prime}(x)=\frac{14 \cdot 5 x^{4}}{14 x^{5}}=\frac{5}{x}
$$

Note: This is the same derivative as the last example, since using properties of derivatives, you can show that the two functions differ by a constant.
3. $g(x)=4+\ln \left(2 x^{2}-4\right)^{3}$

$$
g^{\prime}(x)=0+\frac{3\left(2 x^{2}-4\right)^{2} \cdot 4 x}{\left(2 x^{2}-4\right)^{3}}=\frac{12 x}{2 x^{2}-4}=\frac{6 x}{x^{2}-2}
$$

4. $h(t)=t^{2}+\log _{2} t^{3}$

Since this is not a natural logarithm, we cannot go directly from the formula. However, we can use the change-of-base formula first, so we rewrite $h(t)=t^{2}+\frac{\ln t^{3}}{\ln 2}$, then we can use the natural logarithm derivative formula:

$$
h^{\prime}(t)=2 t+\frac{3 t^{2}}{t^{3} \ln 2}=2 t+\frac{3}{t \ln 2}
$$

5. $y=(\ln x)^{-2}$

Since the \ln is being raised to a power, we need the general power rule to find y^{\prime} :

$$
y^{\prime}=-2 \cdot(\ln x)^{-3} \cdot \frac{1}{x}=-\frac{2}{x(\ln x)^{3}}
$$

6. We also did \#49 from the homework in class.
