## Section 10.3, Optimizing in Business and Economics

## 1 Absolute Extrema

The value $f(c)$ is the absolute maximum of $f$ if $f(c) \geq f(x)$ for all $x$ in the interval of interest. The value $f(c)$ is the absolute minimum of $f$ if $f(c) \leq f(x)$ for all $x$ in the interval of interest.

If a function $f$ is continuous on a closed interval $[a, b]$, it will have an absolute maximum and an absolute minimum on that interval. These will occur either at a critical value of $f$, or at an endpoint of the interval.

## Example

Find the absolute maximum and minimum of $f(x)=x^{3}-3 x+5$ on the interval $[-5,2]$.
First, we need the critical values:

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-3 \\
0 & =3 x^{2}-3=3(x-1)(x+1) \\
x & = \pm 1
\end{aligned}
$$

Now, we need only compare the value of the function $f$ at the critical values, as well as the endpoints of $[-5,2]$.

$$
\begin{aligned}
f(-5) & =-105 \\
f(-1) & =7 \\
f(1) & =3 \\
f(2) & =7
\end{aligned}
$$

Then, -105 is the absolute minimum and occurs at $x=-5$. The absolute maximum is 7 and occurs at both $x=-1$ and $x=2$.

## 2 Application: Average Cost

The average cost per unit is:

$$
\bar{C}=\frac{C(x)}{x}
$$

where $C(x)$ is the total cost when $x$ units are produced.

## Example

The total cost function for a product is $C(x)=300+10 x+0.03 x^{2}$. Find the number of units that will result in a minimum average cost per unit. What is this minimum average cost?

First, we need to calculate the average cost function:

$$
\bar{C}=\frac{300+10 x+0.03 x^{2}}{x}=300 x^{-1}+10+0.03 x
$$

Now, we need to minimize this function, so we must find the critical values (The fraction for $\bar{C}$ was reduced to make taking the derivative easier. This way, we can avoid the quotient rule, and just use
the power rule.).

$$
\begin{aligned}
\bar{C}^{\prime} & =-300 x^{-2}+0.03 \\
0 & =-300 x^{-2}+0.03 \\
x^{2} & =\frac{300}{0.03}=10,000 \\
x & = \pm 100
\end{aligned}
$$

Since $x$ refers to the number of units produced, it cannot be negative. Therefore, the only critical value we need to check is $x=100$. Using either the first or second derivative test, we see that $x=100$ indeed gives a minimum of $\bar{C}$. Then, the minimum average cost is:

$$
\bar{C}=300 \cdot 100^{-1}+10+0.03 \cdot 100=16
$$

