Section 9.9- Applications of Derivatives in Business and Economics Math 1100-4

Thursday, January 26, 2012

1 Marginal Revenue

If $R=R(x)$ is the revenue function for a product, then the marginal revenue function is $\overline{M R}=R^{\prime}(x)$.

Example

The total revenue function for a kind of t -shirt is $R(x)=16 x-0.01 x^{2}$, where R is in dollars and x is the number of t-shirts sold. Find the following:

1. Find the revenue when 40 units are sold.
2. Find the marginal revenue function.
3. Find the marginal revenue at $x=40$. What does the predict about the sale of the next unit?
4. Find $R(41)-R(40)$. What does this quantity represent?

2 Marginal Cost

If $C=C(x)$ is the cost function for a product, then its derivative, $\overline{M C}=$ $C^{\prime}(x)$, is the marginal cost function.

Example

Let $C(x)=4 x^{2}-16 x+40$.

1. Find the marginal cost function.
2. Find the marginal cost when 6 units are sold. What does this represent?

3 Marginal Profit

If $P=P(x)$ is the profit function for a product, then its derivative, $\overline{M P}=$ $P^{\prime}(x)$, is called the marginal profit function.

Example

Let $P(x)=7 x-45$.

1. Find the marginal profit function.
2. What does the marginal profit represent?

Note

Since $P=R-C, \overline{M P}=\overline{M R}-\overline{M C}$ when the functions represent the profit, revenue, and cost of the same product.

