Solutions for Diagnostic Problems

Math 1100-4 Tuesday, January 10, 2012

Directions: Show all work for full credit. Clearly indicate all answers. Simplify all mathematical expressions completely. This assignment is due by the end of class on Tuesday, January 10.

- 1. What was the last math class that you took? When did you take it?
- 2. What other math classes do you need to take?
- 3. What is your major?
- 4. Let $f(x) = \frac{x^2 + x + 3}{x + 2}$. Find the following, if they exist. If the function is undefined at that point, state why:
 - (a) f(-1) $f(-1) = \frac{(-1)^2 + (-1) + 3}{(-1) + 2} = \frac{3}{1} = 3$

(b)
$$f(4)$$

 $f(4) = \frac{4^2 + 4 + 3}{4 + 2} = \frac{23}{6}$

(c) f(-2)Since the denominator is zero at x = -2, f(-2) is undefined. 5. Factor the following expressions:

(a)
$$x^2 - 9$$

 $x^2 - 9 = (x - 3)(x + 3)$

(b)
$$x^2 + x - 6$$

 $x^2 + x - 6 = (x + 3)(x - 2)$

(c)
$$x^2 + 4x + 3$$

 $x^2 + 4x + 3 = (x + 3)(x + 1)$

- 6. Write the following expressions using exponents, leaving neither fractions nor radicals in your final answer:
 - (a) \sqrt{x} $\sqrt{x} = x^{1/2}$

(b)
$$\frac{1}{y}$$

 $\frac{1}{y} = y^{-1}$
(c) $\frac{1}{\sqrt[5]{t^3+3}}$
 $\frac{1}{\sqrt[5]{t^3+3}} = (t^3+3)^{-1/5}$

7. Simplify each of the following:

(a)
$$\frac{4(x+h)^2 - 4x^2}{h} = \frac{4x^2 + 8xh + 4h^2 - 4x^2}{h} = \frac{8xh + 4h^2}{h} = \frac{8xh + 4h^2}{h} = \frac{8xh + 4h^2}{h}$$

(b)
$$(x^{2} + 3x + 1)(3x^{2}) + (2x + 3)(x^{3} + 1)$$

 $(x^{2} + 3x + 1)(3x^{2}) + (2x + 3)(x^{3} + 1)$
 $= 3x^{4} + 9x^{3} + 3x^{2} + 2x^{4} + 2x + 3x^{3} + 3$
 $= 5x^{4} + 12x^{3} + 3x^{2} + 2x + 3$

(c)
$$\frac{x^2 - 4}{x - 2}$$

 $\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2$

You should also have stated that this holds only when $x \neq 2$, but I didn't take off points for that technicality.

(d)
$$\frac{x(3x^2) - x^3(1)}{x^2}$$

 $\frac{x(3x^2) - x^3(1)}{x^2} = \frac{3x^3 - x^3}{x^2} = \frac{2x^3}{x^2} = 2x \text{ for } x \neq 0.$

- 8. Evaluate each of these exponents and logarithms without the use of a calculator:
 - (a) 5^0

 $5^0 = 1$ since any number (except 0) to the 0^{th} power is 1.

(b) 6^1

 $6^1 = 6$ since any number raised to the 1^{st} power is itself.

- (c) $\log_2 8$ $\log_2 8 = 3$ since $2^3 = 8$.
- (d) $\log_3 \frac{1}{3}$ $\log_3 \frac{1}{3} = -1$ since $3^{-1} = \frac{1}{3}$.
- 9. Give the real solution(s) for x that satisfy the following equations (Hint: The Quadratic Formula might be helpful for one of the following.):

(a)
$$x^2 - x = 6$$

 $0 = x^2 - x - 6 = (x - 3)(x + 2)$
 $x = 3, -2$

(b)
$$2x^2 - 4x - 3 = 0$$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2}$
 $= \frac{4 \pm \sqrt{40}}{4} = \frac{2 \pm \sqrt{10}}{2}$