Math 1060-5
Friday, November 30, 2012
Directions: Show all work for full credit. Clearly indicate all answers. Simplify all mathematical expressions completely. No calculators are allowed.

1. Find the trigonometric form of $z=2-2 i$. Give any angles in radians. Also graph the complex number. (13 points)

From formulas, we know that the modulus of the complex number is $r=\sqrt{a^{2}+b^{2}}=$ $\sqrt{2^{2}+(-2)^{2}}=\sqrt{8}=2 \sqrt{2}$. The angle θ satisfies the equation $\tan \theta=\frac{b}{a}=\frac{-2}{2}=-1$. Since the number is in Quadrant IV, we know that the angle must be $\theta=\frac{7 \pi}{4}$. Therefore, the complex number in trigonometric form is

$$
2 \sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)
$$

2. Convert the complex number $z=3\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$ to standard form. Also graph the complex number. (13 points)

$$
z=3\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=3\left(\frac{-\sqrt{3}}{2}+i \frac{1}{2}\right)=-\frac{3 \sqrt{3}}{2}+\frac{3}{2} i
$$

3. Perform each of the following operations and leave your results in trigonometric form with angles between 0 and 2π (or 0° and 360° when degrees are given.). (12 points each)

$$
\text { (a) } \begin{aligned}
& {\left[\frac{3}{4}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\right]\left[4\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\right]} \\
& {\left[\frac{3}{4}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\right]\left[4\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\right]} \\
& =\frac{3}{4} \cdot 4\left[\cos \left(\frac{\pi}{3}+\frac{3 \pi}{4}\right)+i \sin \left(\frac{\pi}{3}+\frac{3 \pi}{4}\right)\right] \\
& \quad=3\left[\cos \frac{13 \pi}{12}+i \sin \frac{13 \pi}{12}\right]
\end{aligned}
$$

(b) $\frac{2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)}{4\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)}$

$$
\begin{aligned}
\frac{2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)}{4\left(\cos 40^{\circ}+i \sin 40^{\circ}\right)} & =\frac{2}{4}\left[\cos \left(120^{\circ}-40^{\circ}\right)+i \sin \left(120^{\circ}-40^{\circ}\right)\right] \\
& =\frac{1}{2}\left[\cos 80^{\circ}+i \sin 80^{\circ}\right]
\end{aligned}
$$

