Math 1060-5

Friday, November 9, 2012

Directions: Show all work for full credit. Clearly indicate all answers. Simplify all mathematical expressions completely. No calculators are allowed.

Formulas

Law of Cosines:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
 $\|\mathbf{v}\| = \sqrt{\mathbf{v}_{1}^{2} + \mathbf{v}_{2}^{2}}$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

1. Find angle A in the triangle with sides $a = \sqrt{13}$, b = 3, and c = 4. If necessary, leave the angle in terms of an inverse trigonometric function. (20 points)

We can use the Law of Cosines with the given information to find A:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$(\sqrt{13})^{2} = 3^{2} + 4^{2} - 2 \cdot 3 \cdot 4 \cos A$$

$$13 = 9 + 16 - 24 \cos A$$

$$-12 = -24 \cos A$$

$$\cos A = \frac{12}{24} = \frac{1}{2}$$

$$A = \frac{\pi}{3} = 60^{\circ}$$

2. Find the component form and magnitude of the vector with the initial point (1,6) and terminal point (-2,2). (10 points)

The vector in component form is:

$$\mathbf{v} = \langle q_1 - p_1, q_2 - p_2 \rangle = \langle -2 - 1, 2 - 6 \rangle = \langle -3, -4 \rangle$$

Its magnitude is:

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

3. Carry out each of the following operations: (10 points each) (#21 from 6.3)

(a)
$$\langle 2, 1 \rangle + \langle 1, 3 \rangle$$

$$\langle 2, 1 \rangle + \langle 1, 3 \rangle = \langle 2 + 1, 1 + 3 \rangle = \langle 3, 4 \rangle$$

(b)
$$2\langle 2, 1 \rangle - 3\langle 1, 3 \rangle$$

$$2\langle 2,1\rangle - 3\langle 1,3\rangle = \langle 4,2\rangle - \langle 3,9\rangle = \langle 1,-7\rangle$$