Section 5.5, Multiple-Angle and Half-Angle Formulas

Homework: 5.5 \#23, 25, 27, 45-53 odds

Now, we will consider double-angle and half-angle formulas. In other words, we will take information that we know about an angle to find values of trigonometric functions for either double or half of that angle.

1 Double-Angle Formulas

$$
\begin{aligned}
\sin 2 u & =2 \sin u \cos u \\
\cos 2 u & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u \\
\tan 2 u & =\frac{2 \tan u}{1-\tan ^{2} u}
\end{aligned}
$$

Each primary formula comes from a Sum Formula in the previous section with $u=v$. The alternate versions of the formula for $\cos 2 u$ come from using that $\sin ^{2} u+\cos ^{2} u=1$.

Examples

1. Find $\sin 2 x$ and $\cos 2 x$ if $\sin x=\frac{5}{6}$ and $0 \leq x \leq \frac{\pi}{2}$.

We can first use $\sin ^{2} x+\cos ^{2} x=1$ to get that $\cos x=\frac{\sqrt{11}}{6}$, so

$$
\sin 2 x=2 \sin x \cos x=2 \frac{5}{6} \cdot \frac{\sqrt{11}}{6}=\frac{5 \sqrt{11}}{18}
$$

Also,

$$
\cos 2 x=1-2 \sin ^{2} x=1-2 \cdot\left(\frac{5}{6}\right)^{2}=-\frac{7}{18}
$$

Note that we only needed the value of one trigonometric function for the $\cos 2 x$ formula. Also note that if we needed $\tan 2 x$, we could just calculate $\frac{\sin 2 x}{\cos 2 x}$.
2. Find $\sin 3 x$ if $\sin x=\frac{5}{6}$ and $0 \leq x \leq \frac{\pi}{2}$.

The given information is the same as in the previous question, so we can use the answers from those:

$$
\begin{aligned}
\sin 3 x & =\sin (2 x+x)=\sin (2 x) \cos x+\cos (2 x) \sin x=\frac{5 \sqrt{11}}{18} \cdot \frac{\sqrt{11}}{6}+\left(-\frac{7}{18}\right) \cdot \frac{5}{6} \\
& =\frac{55}{108}-\frac{35}{108}=\frac{20}{108}=\frac{5}{27}
\end{aligned}
$$

2 Half-Angle Formulas

$$
\begin{aligned}
\sin \frac{u}{2} & = \pm \sqrt{\frac{1-\cos u}{2}} \\
\cos \frac{u}{2} & = \pm \sqrt{\frac{1+\cos u}{2}} \\
\tan \frac{u}{2} & =\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u}
\end{aligned}
$$

The signs of $\sin \frac{u}{2}$ and $\cos \frac{u}{2}$ depend on the quadrant in which $\frac{u}{2}$ lies.

Example

Calculate $\sin \frac{3 \pi}{8}, \cos \frac{3 \pi}{8}$, and $\tan \frac{3 \pi}{8}$.
We will use the information that we know about $\frac{3 \pi}{4}$ to find information about $\frac{3 \pi}{8}=\frac{3 \pi / 4}{2}$. Also note that $\frac{3 \pi}{8}$ is in Quadrant I, so all of our trigonometric functions will be positive.

$$
\begin{aligned}
\sin \frac{3 \pi}{8} & = \pm \sqrt{\frac{1-\frac{-\sqrt{2}}{2}}{2}} \\
& =\sqrt{\frac{2+\sqrt{2}}{4}}=\frac{\sqrt{2+\sqrt{2}}}{2} \\
\cos \frac{3 \pi}{8} & = \pm \sqrt{\frac{1+\frac{-\sqrt{2}}{2}}{2}} \\
& =\sqrt{\frac{2-\sqrt{2}}{4}}=\frac{\sqrt{2-\sqrt{2}}}{2} \\
\tan \frac{3 \pi}{8} & =\frac{\sin u}{1+\cos u}=\frac{\frac{\sqrt{2}}{2}}{1-\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{2-\sqrt{2}} \cdot \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{2 \sqrt{2}+2}{2}=\sqrt{2}+1
\end{aligned}
$$

Note: If we were asked about the angle $11 \pi / 8$, we could use the angle $u=11 \pi / 4$, which is coterminal with $3 \pi / 4$. However, $11 \pi / 8$ is in Quadrant III, so we would need to choose the values of sine and cosine to be negative.

