Section 5.3, Solving Trigonometric Equations

Homework: 5.3 \#7-39 odds

In Section 4.7, we learned about inverse trigonometric functions, which gave only one solution to equations like $\sin x=\frac{1}{2}$. Now, we will focus on finding all angles that solve trigonometric equations.

Examples

Solve the following equations:

1. $2 \cos x-1=0$

$$
\begin{aligned}
2 \cos x-1 & =0 \\
2 \cos x & =1 \\
\cos x & =\frac{1}{2} \\
x & =\frac{\pi}{3}+2 n \pi,-\frac{\pi}{3}+2 n \pi
\end{aligned}
$$

2. $\tan ^{2} x+\sqrt{3} \tan x=0$

We can use techniques from factoring, so:

$$
\begin{array}{rlrl}
\tan ^{2} x+\sqrt{3} \tan x & =0 \\
\tan x(\tan x+\sqrt{3}) & =0 \\
\tan x & =0 \\
x & =n \pi & \tan x & =-\sqrt{3} \\
& x & =-\frac{\pi}{3}+n \pi
\end{array}
$$

3. $4 \sin ^{2} x-1=0$

$$
\begin{array}{rlrl}
4 \sin ^{2} x-1 & =0 \\
(2 \sin x-1)(2 \sin x+1) & =0 \\
\sin x & =\frac{1}{2} & \sin x & =-\frac{1}{2} \\
x & =\frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi & x & =\frac{7 \pi}{6}+2 n \pi, \frac{11 \pi}{6}+2 n \pi
\end{array}
$$

4. $3 \sin ^{2} x=\cos ^{2} x$

Here, we have more than one trigonometric function, so we want to change this to having only one trigonometric function. Let's use the identity $\cos ^{2} x=1-\sin ^{2} x$

$$
\begin{aligned}
3 \sin ^{2} x & =\cos ^{2} x \\
3 \sin ^{2} x & =1-\sin ^{2} x \\
4 \sin ^{2} x-1 & =0
\end{aligned}
$$

This is now the same as the last problem, so $x=\frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi, \frac{7 \pi}{6}+2 n \pi, \frac{11 \pi}{6}+2 n \pi$.
You could also solve this by first dividing both sides by $\cos ^{2} x$, which would give you $3 \tan ^{2} x=$ 1.
5. $\cot ^{2} 4 x=3$

$$
\begin{aligned}
\cot ^{2} 4 x & =3 \\
\cot 4 x & = \pm \sqrt{3} \\
4 x & =\frac{\pi}{6}+n \pi,-\frac{\pi}{6}+n \pi \\
x & =\frac{\pi}{24}+\frac{n \pi}{4},-\frac{\pi}{24}+\frac{n \pi}{4}
\end{aligned}
$$

6. $1+\tan ^{2} \theta=\sec ^{2} \theta$

All values of θ will satisfy this equation. This will happen whenever your equation is a trigonometric identity.

