Section 4.6, Graphs of Other Trigonometric Functions

Homework: 4.6 #1-19 odds, 29

Note: The graphs displayed in these notes are for your reference. Graphs sketched in class and done on quizzes and exams will need to be labeled with more detail.

1 Graph of Tangent

Let $y = \tan x$. Then we know that:

- 1. There are vertical asymptotes at $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{2} \pm n\pi$ (for any integer *n*). This happens because $\tan x = \frac{\sin x}{\cos x}$, and $\cos x = 0$ at $\frac{\pi}{2} \pm n\pi$ for any integer *n*.
- 2. There are x-intercepts at $x = \ldots, -\pi, 0, \pi, 2\pi, \ldots$ since $\sin x = 0$ at any multiple of π .
- 3. The period of the graph is π . For most trig functions, the period is 2π , but here it's actually smaller, since $\sin(x + \pi) = -\sin x$ and $\cos(x + \pi) = -\cos x$, so $\tan(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin x}{-\cos x} = \tan x$.

The graph looks like:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$.)

Example

Sketch the graph of $y = -2\tan(\frac{x}{2}) + 3$.

The negative sign will "flip" the graph upside-down. The coefficient of 2 will "stretch" the graph from top to bottom. The period is now $\pi/(1/2) = 2\pi$ instead of π . The graph is also shifted up 3.

(Hash marks on the x-axis are in increments of π . The y-intercept is now 3.)

2 Graph of Cotangent

Let $y = \cot x$. Then,

- 1. The graph has vertical asymptotes at all multiples of π (since sin x = 0 at all multiples of π).
- 2. The graph has x-intercepts at $x = \frac{\pi}{2} + n\pi$ for all integers n (when $\cos x = 0$).
- 3. The period of this graph is also π .

The graph is:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$. There is no y-intercept.)

Example

Sketch the graph of $y = 3 \cot \frac{x}{4}$.

The 3 will stretch the graph vertically by a factor of 3. The fraction will change the period to 4π instead of π . The graph is:

3 Graph of Secant

Let $y = \sec x$. The graph has vertical asymptotes when $x = \frac{\pi}{2} + n\pi$ for every integer *n* (since $\cos x = 0$ at those *x*-values). The period of the graph is 2π . There are no *x*-intercepts. The *y*-intercept is 1.

The graph looks like:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$.)

Example

Sketch the graph of $y = 3 \sec x$.

The 3 will "stretch" the graph away from zero, so the values of y will be greater than 3 or less than -3. The graph of this function is:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$. The y-intercept is 3.)

4 Graph of Cosecant

Let $y = \csc x$. The graph has vertical asymptotes at all multiples of π (when $\sin x = 0$). The period of the graph is 2π . There are no *x*-intercepts. There is no *y*-intercept.

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$.)

Example

Sketch the graph of $y = 2 \csc(x + \frac{\pi}{4})$.

The graph will now never be between -2 and 2. The $\pi/4$ causes the graph to shift to the left by $\pi/4$.

(The hash marks are in increments of $\pi/2$. The *y*-intercept is $2\sqrt{2}$.)

5 Dampened Trig Graphs

Example

Sketch the graph of $y = x \cos x$.

As x gets larger, the graph will oscillate more vertically. When x is negative, the cosine pattern will be flipped vertically (just like when the coefficient for cosine is negative). The y-intercept is 0. The x-intercepts are the same as for the cosine function (0 is also an x-intercept here).

