Section 4.6, Graphs of Other Trigonometric Functions

Homework: 4.6 \#1-19 odds, 29

Note: The graphs displayed in these notes are for your reference. Graphs sketched in class and done on quizzes and exams will need to be labeled with more detail.

1 Graph of Tangent

Let $y=\tan x$. Then we know that:

1. There are vertical asymptotes at $x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{2} \pm n \pi$ (for any integer n). This happens because $\tan x=\frac{\sin x}{\cos x}$, and $\cos x=0$ at $\frac{\pi}{2} \pm n \pi$ for any integer n.
2. There are x-intercepts at $x=\ldots,-\pi, 0, \pi, 2 \pi, \ldots$ since $\sin x=0$ at any multiple of π.
3. The period of the graph is π. For most trig functions, the period is 2π, but here it's actually smaller, since $\sin (x+\pi)=-\sin x$ and $\cos (x+\pi)=-\cos x$, so $\tan (x+\pi)=\frac{\sin (x+\pi)}{\cos (x+\pi)}=$ $\frac{-\sin x}{-\cos x}=\tan x$.
The graph looks like:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$.)

Example

Sketch the graph of $y=-2 \tan \left(\frac{x}{2}\right)+3$.
The negative sign will "flip" the graph upside-down. The coefficient of 2 will "stretch" the graph from top to bottom. The period is now $\pi /(1 / 2)=2 \pi$ instead of π. The graph is also shifted up 3 .

(Hash marks on the x-axis are in increments of π. The y-intercept is now 3.)

2 Graph of Cotangent

Let $y=\cot x$. Then,

1. The graph has vertical asymptotes at all multiples of π ($\operatorname{since} \sin x=0$ at all multiples of π).
2. The graph has x-intercepts at $x=\frac{\pi}{2}+n \pi$ for all integers $n($ when $\cos x=0)$.
3. The period of this graph is also π.

The graph is:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$. There is no y-intercept.)

Example

Sketch the graph of $y=3 \cot \frac{x}{4}$.
The 3 will stretch the graph vertically by a factor of 3 . The fraction will change the period to 4π instead of π. The graph is:

(Hash marks on the x-axis are in increments of π.)

3 Graph of Secant

Let $y=\sec x$. The graph has vertical asymptotes when $x=\frac{\pi}{2}+n \pi$ for every integer n (since $\cos x=0$ at those x-values). The period of the graph is 2π. There are no x-intercepts. The y-intercept is 1 .
The graph looks like:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$.)

Example

Sketch the graph of $y=3 \sec x$.
The 3 will "stretch" the graph away from zero, so the values of y will be greater than 3 or less than -3 . The graph of this function is:

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$. The y-intercept is 3 .)

4 Graph of Cosecant

Let $y=\csc x$. The graph has vertical asymptotes at all multiples of $\pi($ when $\sin x=0)$. The period of the graph is 2π. There are no x-intercepts. There is no y-intercept.

(Hash marks on the x-axis are in increments of $\frac{\pi}{2}$.)

Example

Sketch the graph of $y=2 \csc \left(x+\frac{\pi}{4}\right)$.
The graph will now never be between -2 and 2 . The $\pi / 4$ causes the graph to shift to the left by $\pi / 4$.

(The hash marks are in increments of $\pi / 2$. The y-intercept is $2 \sqrt{2}$.)

5 Dampened Trig Graphs

Example

Sketch the graph of $y=x \cos x$.
As x gets larger, the graph will oscillate more vertically. When x is negative, the cosine pattern will be flipped vertically (just like when the coefficient for cosine is negative). The y-intercept is 0 . The x-intercepts are the same as for the cosine function (0 is also an x-intercept here).

