Section 4.5, Graphs of Sine and Cosine Functions

Homework: $4.5 \# 7-13$ odds, 37-49 odds, 53

For our graphs, we will assume that the angle x is given in radians.

1 Graphs of Sine and Cosine

Let $y=\sin x$. Then its graph is:

(The hash marks on the x-axis are in increments of $\pi / 2$.) Also, since sine is 2π-periodic, this pattern repeats.
Let $y=\cos x$. Then its graph is:

(The hash marks on the x-axis are in increments of $\pi / 2$ again.) Cosine is also 2π-periodic, this pattern repeats.

The book shows more detailed graphs on page 332.
Our goal for the rest of the section will be to graph functions of the form

$$
\begin{aligned}
& y=a \sin (b x-c)+d \text { and } \\
& y=a \cos (b x-c)+d, \text { where } a, b, c, \text { and } d \text { are real numbers }
\end{aligned}
$$

We will focus on one additional number at a time.
If $y=a \sin x$ or $y=a \cos x$, we say that $|a|$ is the amplitude of y. Now, instead of having the graph go from $y=-1$ to $y=1$, it will go from $y=-a$ to $y=a$.

Examples

1. Sketch the graph of $y=4 \sin x$.

The amplitude of the function is 4 . The graph is:

(The hash marks on the x-axis are in increments of $\pi / 2$.)
2. Sketch the graph of $y=-\frac{1}{2} \cos x$.

The amplitude of the function is $\frac{1}{2}$. The negative sign will "flip" the graph upside down.

(The hash marks on the x-axis are in increments of $\pi / 2$.)
Now, we will focus on functions of the form $y=a \sin (b x)$ and $y=a \cos (b x)$. We will assume that $b>0$ (If b is negative, we can use that sine is an odd function and that cosine is an even function to rewrite it for $|b|$.)

The period of the graph changes to $\frac{2 \pi}{b}$.

Examples

1. Sketch the graph of $y=3 \sin 2 x$.

The amplitude is 3 and the period is $\frac{2 \pi}{2}=\pi$.

(The hash marks on the x-axis are in increments of $\pi / 4$.)
2. Sketch the graph of $y=-2 \cos \frac{x}{2}$.

The amplitude of the function is 2 . The negative sign will "flip" the graph upside down. The period of the graph is $\frac{2 \pi}{1 / 2}=4 \pi$.

(The hash marks on the x-axis are in increments of π.)
Now, we will focus on horizontal and vertical shifts, which come from including the c and d in $y=a \sin (b x-c)+d$ and $y=a \cos (b x-c)+d$. (The d creates the vertical shift, and the c creates the horizontal shift.)

Examples

1. Sketch the graph of $y=\cos (x+\pi)-3$.

The amplitude is 1 and the period is 2π. The -3 will shift the graph down 3 units. The $+\pi$ will cause the "pattern" for cosine to go from $-\pi$ to π instead of from 0 to 2π (we get these numbers by solving $x+\pi=0$ and $x+\pi=2 \pi$.).

(The hash marks on the x-axis are in increments of $\pi / 2$.)
2. Sketch the graph of $y=-4 \sin \left(4 x-\frac{\pi}{2}\right)+5$.

The amplitude is 4 and the period is $\frac{2 \pi}{4}=\frac{\pi}{2}$. The graph is flipped upside-down (due to the -4 before the sine). It is also shifted up 5 , and the cycle that normally goes from 0 to 2π is repeated from $\pi / 8$ to $5 \pi / 8$ (we get these numbers by solving $4 x-\frac{\pi}{2}=0$ and $4 x-\frac{\pi}{2}=2 \pi$).

(The hash marks on the x-axis are in increments of $\pi / 8$.)

