Section 4.1, Radian and Degree Measure

Homework: 4.1 \#1-69 odds

1 Drawing Angles in Standard Position

In standard position, the initial side of the angle lies along the positive x-axis, the vertex of the angle is the origin, $(0,0)$. For positive angles, you move counterclockwise to get to the terminal side. For negative angles, you move clockwise.

There are 2 ways of measuring angles: Degrees and Radians.

2 Degrees

A full revolution corresponds to 360°. There is a good diagram on page 285 of the book.
Two angles are coterminal if they have the same initial and terminal sides (i.e., they are different angles that end with the same terminal side). They will differ by a multiple of 360°.

Example

Find 2 coterminal angles for 72°.
Adding 360°, we get 432°. Subtracting 360°, we get -288°. (Note: there are infinitely many possible solutions)

3 Radians

The measure of an angle θ in radians is the ratio of the length of the arc s the angle creates to the radius r of the circle, $\theta=s / r$.
As a result, there are 2π radians in one rotation (since $C=2 \pi r$ for the circumference of a circle).

Example

Graph each of the following angles:
$\pi / 4, \pi, 2 \pi,-9 \pi / 4,3 \pi / 2, \pi / 6, \pi / 2,-5 \pi / 4$

4 Converting between Degrees and Radians

Since one rotation is 360° in degrees and 2π in radians, we can see that $1=\frac{360^{\circ}}{2 \pi}=\frac{180^{\circ}}{\pi}$ can be used to convert from radians to degrees. To convert from degrees to radians, we can multiply by $\frac{\pi}{180^{\circ}}$.

Examples

1. Convert the following angles to radians:
(a) 240°

$$
240^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{4}{3} \pi
$$

(b) 135°

$$
135^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{3}{4} \pi
$$

(c) -60°

$$
-60^{\circ} \cdot \frac{\pi}{180^{\circ}}=-\frac{\pi}{3}
$$

2. Convert the following angles to degrees:
(a) $2 \pi / 3$

$$
\frac{2 \pi}{3} \cdot \frac{180^{\circ}}{\pi}=120^{\circ}
$$

(b) $-7 \pi / 6$

$$
-\frac{7 \pi}{6} \cdot \frac{180^{\circ}}{\pi}=-210^{\circ}
$$

5 Quadrants

The four quadrants are identified the same way they are with graphing "normal" points.

These also hold for all coterminal angles. The "boundaries," $(0, \pi / 2, \pi, 3 \pi / 2$, etc.) are not in any quadrant. Rather, they are normally considered to be between quadrants.

Example

Determine the quadrant for each of the following angles:

1. $\pi / 4$

This is in quadrant I.
2. $-25 \pi / 12$

This angle is coterminal with $-\pi / 12$, so it is in Quadrant IV.
3. 4π

This is not in any quadrant, since it is an angle on the boundary of two quadrants.

6 Complementary and Supplementary Angles

Two positive angles are complementary if their sum is $\pi / 2\left(90^{\circ}\right)$.
Two positive angles are supplementary if their sum is $\pi\left(180^{\circ}\right)$.

Examples

1. Find the complement and supplement of $\pi / 6$.

Complement: $\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$.
Supplement: $\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$.
2. Find the complement and supplement of 135°.

Complement: $90^{\circ}-135^{\circ}=-45^{\circ}<0$, so there is no complement.
Supplement: $180^{\circ}-135^{\circ}=45^{\circ}$.

