Math 1220-7
November 30, 2012

Directions: Show all work for full credit. Clearly indicate all answers. Simplify all mathematical expressions completely. No calculators are allowed on this quiz.

1. Find the Maclaurin Series for $f(x)=e^{-x}$. Include terms through at least the x^{3} term. (25 points)
We will need to find the derivatives at $x=0$:

$$
\begin{array}{rlrl}
f(x) & =e^{-x} & f(0) & =1 \\
f^{\prime}(x) & =-e^{-x} & f^{\prime}(0) & =-1 \\
f^{\prime \prime}(x) & =e^{-x} & f^{\prime \prime}(0) & =1 \\
f^{\prime \prime \prime}(x) & =-e^{-x} & f^{\prime \prime \prime}(0) & =-1
\end{array}
$$

Then, the Maclaurin Series is

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& =1-x+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\cdots
\end{aligned}
$$

2. Find the Taylor Polynomial in $\left(x-\frac{\pi}{3}\right)$ of order 2 for the function $f(x)=\cos x$. $(25$ points)
We will need to find the derivatives at $x=\frac{\pi}{3}$:

$$
\begin{array}{ll}
f(x)=\cos x & f(\pi / 3)=\frac{1}{2} \\
f^{\prime}(x)=-\sin x & f^{\prime}(\pi / 3)=-\frac{\sqrt{3}}{2} \\
f^{\prime \prime}(x)=-\cos x & f^{\prime \prime}(\pi / 3)=-\frac{1}{2}
\end{array}
$$

Then, the Taylor polynomial of order 2 is

$$
\begin{aligned}
f(x) & =f(\pi / 3)+f^{\prime}(\pi / 3)\left(x-\frac{\pi}{3}\right)+\frac{f^{\prime \prime}(\pi / 3)}{2!}\left(x-\frac{\pi}{3}\right)^{2} \\
& =\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}
\end{aligned}
$$

3. Find a good (upper) bound for $\left|\frac{c+2}{c+3}\right|$, where $c \in[0,2]$. (10 points)

$$
\left|\frac{c+2}{c+3}\right| \leq \frac{2+2}{c+3} \leq \frac{4}{0+3}=\frac{4}{3}
$$

Note: There are other ways to do this problem, such as taking the derivative to find the critical values.

