Quiz 3
Math 1220-7
September 14, 2012

Directions: Show all work for full credit. Clearly indicate all answers. Simplify all mathematical expressions completely. Each question is worth 15 points.

Formulas

Euler's Method

$$
\begin{aligned}
& x_{n}=x_{n-1}+h \\
& y_{n}=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& D_{x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, \quad-1<x<1 \\
& D_{x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}, \quad-1<x<1 \\
& D_{x} \tan ^{-1} x=\frac{1}{1+x^{2}} \\
& D_{x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}, \quad|x|>1
\end{aligned}
$$

1. Use Euler's Method with $h=0.25$ to approximate the solution of $y^{\prime}=x y$ with $y(1)=3$ over the interval $[1,2]$.
2. Find $\frac{d y}{d x}$ if $y=\left(\cos ^{-1}\left(2 x^{2}\right)\right)\left(\tan ^{-1}\left(e^{x}\right)\right)$.
3. Evaluate $\int \frac{1}{1+4 x^{2}} d x$.
4. Evaluate $\int_{0}^{\sqrt{2} / 2} \frac{1}{\sqrt{1-x^{2}}} d x$.
