
Section 9.9, The Taylor Approximation to a Function

Homework: 9.9 #1–17 odds, 29–41 odds

There are many math problems that occur in applications that we cannot solve exactly, such as∫ x

0
e−t

2

dt. If a solution is needed, we need to approximate them.

1 Taylor Polynomials

The Taylor Polynomial of order n based at a is given by

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

The order is the last derivative that we take. Note that this is not necessarily the degree of the
polynomial. For example, if f (n)(a) = 0, it will be of degree at most n− 1.

The Maclaurin Polynomial comes from using a = 0.

Example
For f(x) = e−3x, find the Maclaurin polynomial of order 4 and use it to approximate f(0.12).

For the Maclaurin polynomial, we first need derivatives evaluated at x = 0:

f ′(x) = −3e−3x f ′(0) = −3

f ′′(x) = 9e−3x f ′′(0) = 9

f ′′′(x) = −27e−3x f ′′′(0) = −27

f (4)(x) = 81e−3x f (4)(0) = 81

Then, the Maclaurin polynomial of order 4 is

P4(x) = 1− 3x+
9

2!
x2 − 27

3!
x3 +

81

4!
x4

= 1− 3x+
9

2
x2 − 9

2
x3 +

27

8
x4

Then,

f(0.12) ≈ P4(0.12) = 1− 3 · 0.12 +
9

2
· 0.122 − 9

2
· 0.123 +

27

8
· 0.124 = 0.69772384

Note: The actual answer is 0.6976763261.

2 Errors

Recall that the remainder (or error) caused by approximating a function by the nth order Taylor
polynomial is

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

where c ∈ (x, a). This is called the Lagrange Error for Taylor Polynomials.

Example
Find the error in estimating f(0.12) in the last example.
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We know that∣∣R5(x)
∣∣ =

∣∣∣∣f (5)(c)5!
x5
∣∣∣∣ =

∣∣∣∣−243e−3c

5!
· 0.125

∣∣∣∣
≤ 243

120
· 0.125 = 5.038848 · 10−5,

where we used that e−3x ≤ 1 when x ∈ (0, 0.12) and x = 0.12.

Note: The actual error is 4.7513929 · 10−5, which is less that what we calculated. (This is what
should happen.)

The Lagrange Error formula gives us an error bound or the method itself. However, there may
be additional rounding errors along the way due to the computations. This means that there is
a balance for the number of terms that we need. Having more terms will reduce errors from the
method itself, but increases the error caused by the calculations.

For example, consider a finite sequence {ai}ni=1 where ai ≈ 0.001. If we have a number s ≈ 1, 000, 000
and want to calculate s− a1 − a2 − a3 − · · · − an, we have two logical options:

1. We can find s− a1, then (s− a1)− a2, then
(
(s− a1)− a2

)
− a3, and so on. This method may

cause us to lose accuracy due to errors quickly.

2. We can first find a1 +a2 + · · ·+an, then find s− (a1 +a2 + · · ·+an). This allows the computer
or calculator to “focus” on the small numbers, and we aren’t likely to lose as much accuracy
due to rounding. This is probably the better method in this case.

To obtain a good bound for Rn(x), we can use the triangle inequality, which says that |a±b| ≤ |a|+|b|.

Examples
Find good bounds for the maximum value of each of the following on the given interval:

1.

∣∣∣∣ 4c

c+ 4

∣∣∣∣ for c ∈ [0, 1]

Since we want to maximize the function, we can maximize the numerator and minimize the
denominator, so we get∣∣∣∣ 4c

c+ 4

∣∣∣∣ ≤ 4

c+ 4
≤ 4

4
= 1

Note: You can get a slightly better bound by taking derivatives. The true maximum is 4/5.

2.
∣∣ tan c+ sec c

∣∣ for c ∈ [0, π/4].

∣∣ tan c+ sec c
∣∣ ≤ tan

π

4
+ sec

π

4
= 1 +

√
2

2


