
Section 9.8, Taylor and Maclaurin Series

Homework: 9.8 #1–27 odds, 33

If we can represent a function f(x) as a power series in (x− a), then

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + · · ·
f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + 5c5(x− a)4 + · · ·
f ′′(x) = 2c2 + 6c3(x− a) + 12c4(x− a)2 + 20c5(x− a)3 + 30c6(x− a)4 + · · ·
f ′′′(x) = 6c3 + 24c4(x− a) + 60c5(x− a)2 + 120c6(x− a)3 + 210c7(x− a)4 + · · ·

and so on. Then, for x = a,

f(a) = c0 f ′(a) = c1 f ′′(a) = 2c2 f ′′′(a) = 6c3 so

c0 = f(a) c1 = f ′(a) c2 =
f ′′(a)

2
c3 =

f ′′′(a)

6

Generalizing, we see that cn =
f (n)(a)

n!
, so each cn is unique and depends on the function f .

Uniqueness Theorem
Suppose that f(x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + c4(x − a)4 + · · · for all x in some

interval around a. Then, cn = f(n)(a)
n! .

The series f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + f ′′′(a)

3! (x− a)3 + f(4)(a)
4! (x− a)4 + · · · is called

a Taylor Series. If a = 0, it is called a Maclaurin Series

Occasionally, we will need a finite sum instead of an infinite one. In this case, there will be an error
introduced. If f (n+1)(x) exists for all x in an open interval I containing a, then for all x ∈ I,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x),

where Rn is the remainder (or error). Then, Rn(x) =
f (n+1)(c)

(n+ 1)!
(x − a)n+1, where c is some value

between x and a.

Taylor’s Theorem says that if f is a function with all derivatives in the interval (a−r, a+r), then

lim
n→∞

Rn(x) = 0, where Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1 and c ∈ (a− r, a+ r).

The formula for the remainder Rn will normally not be used to find the exact error. However, we
can use it to find the maximum error in a given interval. We will consider the error more in the
next section.

Examples

1. Write the Maclaurin Series for f(x) = ex.

For the formula, we need derivatives for f(x) = ex:

f ′(x) = f ′′(x) = f ′′(x) = · · · = ex

Then, the Maclaurin Series (the Taylor Series with a = 0) is

ex = e0 + e0x+
e0

2!
x2 +

e0

3!
x3 +

e0

4!
x4 + · · ·

= 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

1



2. Find the Maclaurin Series for f(x) = cosx and prove that it represents cosx for all x.

We need to find derivatives of f(x) = cosx, so

f ′(x) = − sinx

f ′′(x) = − cosx

f ′′′(x) = sinx

f (4)(x) = cosx

...

Therefore,

cosx = cos 0− sin 0x− cos 0

2!
x2 +

sin 0

3!
x3 +

cos 0

4!
x4 − sin 0

5!
x5 − cos 0

6!
x6 + · · ·

= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

To show that this holds for all values of x, we can show that the radius of convergence is
infinite. Let x ∈ R. limn→∞

xn

n! = 0, so the Maclaurin series is an alternating series with terms
that converge to 0. This means that the series holds for all values of x.

3. Find the Maclaurin Series for f(x) = (1 + x)p, where p ∈ R.

If p is an integer, we know that

(1 + x)p = 1 +

(
p

1

)
x+

(
p

2

)
x2 +

(
p

3

)
x3 +

(
p

4

)
x4 + · · ·

from the Binomial Formula, where(
p

k

)
=

p!

k!(p− k)!
=
p(p− 1)(p− 2) · · · (p− (k − 1))(p− k)!

k!(p− k)!

=
p(p− 1)(p− 2) · · · (p− (k − 1))

k!

The last line of this identity actually holds for all p ∈ R and k ∈ Z+. Then, for all p ∈ R and
|x| < 1,

(1 + x)p = 1 +

(
p

1

)
x+

(
p

2

)
x2 +

(
p

3

)
x3 +

(
p

4

)
x4 + · · ·

Note that if p ∈ Z+,
(
p
k

)
= 0 for k > p, so the infinite series becomes a finite sum, which is

exactly the binomial formula.

4. Write the Maclaurin Series for f(x) = (1− x2)2/3 through the fifth term.

We could find this by taking derivatives, but this will get complicated quite quickly (After the
first derivative, we would need the product rule at each step, which will introduce an extra
term in each step.). To avoid this, we can first find the Maclaurin Series for g(x) = (1 +x)2/3,
then evaluate it at −x2 instead of x (f(x) = g(−x2)). Since this uses the last example with
p = 2/3, we can evaluate:(

2/3

1

)
= 2/3(

2/3

2

)
=

2
3 ·
−1
3

2!
= −1

9(
2/3

3

)
=

2
3 ·
−1
3 ·

−4
3

3!
=

4

81(
2/3

4

)
=

2
3 ·
−1
3 ·

−4
3 ·

−7
3

4!
= − 7

243

2



So,

(1 + x)2/3 = 1 +
2x

3
− x2

9
+

4x3

81
− 7x4

243
+ · · ·

(1− x2)2/3 = 1 +
2(−x2)

3
− (−x2)2

9
+

4(−x2)3

81
− 7(−x2)4

243
+ · · ·

= 1− 2x2

3
− x4

9
− 4x6

81
− 7x8

243
+ · · ·

for |x| < 1

5. Find the Taylor Series for f(x) = sinx in (x− π/4).

Instead of a = 0, we will be using a = π/4. To start, we need derivatives:

f(x) = sinx f(π/4) = sin
π

4
=

√
2

2

f ′(x) = cosx f ′(π/4) = cos
π

4
=

√
2

2

f ′′(x) = − sinx f ′′(π/4) = − sin
π

4
= −
√

2

2

f ′′′(x) = − cosx f ′′′(π/4) = − cos
π

4
= −
√

2

2

f (4)(x) = sinx f (4)(π/4) = sin
π

4
=

√
2

2

So, the Taylor series is

sinx =

√
2

2
+

√
2

2

(
x− π

4

)
−
√

2

2 · 2!

(
x− π

4

)2

−
√

2

2 · 3!

(
x− π

4

)3

+

√
2

2 · 4!

(
x− π

4

)4

+ · · ·

=

√
2

2
+

√
2

2

(
x− π

4

)
−
√

2

4

(
x− π

4

)2

−
√

2

12

(
x− π

4

)3

+

√
2

48

(
x− π

4

)4

+ · · ·

6. Using sinx = x − x3

3! + x5

5! −
x7

7! + x9

9! + · · · , write the Maclaurin Series up to the x5 term for
f(x) = 1

1−sin x .

First, we can find the Maclaurin Series for 1− sinx:

1− sinx = 1−
(
x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ · · ·

)
= 1− x+

x3

3!
− x5

5!
+
x7

7!
− x9

9!
+ · · ·

Then, we can carry out long division with 1/(1−sinx) to get our final answer. (Done in class.)

Note: If you are unsure of an answer, you can use a graphing utility to compare the original
function to the first few terms of the series expansion. If the graphs are close near the value for
x = a (x = 0 for the Maclaurin Series), there is a good chance that your answer is correct. If the
graphs are not close, there normally either a mistake, or not enough terms are being graphed. For
example, the terms listed for the expansion of f(x) = cosx (through the x6 term) only give a good
approximation for x ∈ (−π/2, π/2). Including through the x12 term gives a good approximation
for x ∈ (−3π/2, 3π/2). Since giving more terms makes the graphs more accurate, we can be fairly
confident that the established pattern is the correct expansion.
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