Section 9.6, Power Series

Homework: 9.6 \#1-31 odds

In the last few sections, we have looked at series of constants. Now, we will transition to look at a series of functions. Our primary goal for this section will be to find the values of x for which the series converges. In future sections, we will find the function to which the series converges.

1 Power Series in x

A Power Series in x has the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

The convergence set of a power series is the set of x-values where the power series converges.
The convergence set for a power series $\sum a_{n} x^{n}$ is always an interval of one of the following three type:

1. The single point $x=0$.
2. An interval of the form $(-R, R),[-R, R],[-R, R)$, or $(-R, R]$.
3. The entire real line, $(-\infty, \infty)$.

We say that the radius of convergence is $0, R$, or ∞, respectively.

Examples

1. Find the convergence set for $\sum_{n=0}^{\infty} a x^{n}$, where $a \neq 0$ is a real number.

This is the formula for a geometric series in x, so this converges for $|x|<1$, so the convergence set is $(-1,1)$.
2. Find the convergence set for $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots$.

We can start with the absolute ratio test. For this, we need a formula for the $n^{\text {th }}$ term, which is $\frac{x^{2 n}}{(2 n)!}$ (Remember, the first term is actually when $n=0$.) Then,

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{\frac{|x|^{2(n+1)}}{(2(n+1))!}}{\frac{|x|^{2 n}}{(2 n)!}} \\
& =\frac{x^{2}}{(2 n+2)(2 n+1)}
\end{aligned}
$$

Since taking $n>x$ shows us that this ratio converges to zero as $n \rightarrow \infty$ for all values of x, the convergence set is \mathbb{R}.
3. Find the convergence set for $1+x+\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{3}}+\frac{x^{4}}{\sqrt{4}}+\cdots$.

We can write the $n^{\text {th }}$ term of this as $\frac{x^{n}}{\sqrt{n}}$. Using the absolute ratio test gives us

$$
\frac{a_{n+1}}{a_{n}}=\frac{|x|^{n+1} / \sqrt{n+1}}{|x|^{n} / \sqrt{n}}=|x| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}
$$

This ratio limits to a number less than 1 when x is in the interval $(-1,1)$, so it converges for those x-values. When $|x|>1$, the ratio limits to a number larger than 1 , so it diverges when
$|x|>1$. This test is inconclusive for $x= \pm 1$, so we need to consider those cases separately. When $x=1$, by the p-series test, this series diverges (using $p=1 / 2$). When $x=-1$, this is an alternating series with terms that decrease to zero, so the series converges. Therefore, the convergence set is $[-1,1)$.

2 Power Series in $(x-a)$

The power series that we've been looking at so far in this section have been centered around 0 . Now, we will consider ones that are centered around another value, a.

A Power Series in $(x-a)$ has the form

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots
$$

The convergence set for a power series in a has one of three forms:

1. A single point $x=a$.
2. An interval of the form $(a-R, a+R)$ (possibly including one or both endpoints).
3. The whole real line $(-\infty, \infty)$.

Example

Find the convergence set for $1+\frac{x-3}{2}+\frac{(x-3)^{2}}{2^{2}}+\frac{(x-3)^{3}}{2^{3}}+\cdots$
The $n^{t h}$ term of the series is $\frac{(x-3)^{n}}{2^{n}}$. Using the absolute ratio test, we get the ratio

$$
\frac{a_{n+1}}{a_{n}}=\frac{|x-3|^{n+1} / 2^{n+1}}{|x-3|^{n} / 2^{n}}=\frac{|x-3|}{2}
$$

This ratio is less than 1 when $x \in(1,5)$. When $x=1$ or $x=5$, every term in the series is ± 1, so the series diverges. Therefore, the interval of convergence is $(1,5)$.

