Section 9.3, Positive Series: The Integral Test

Homework: 9.3 \#1-33 odds

1 Bounded Sum Test

A series $\sum a_{k}$ of nonnegative terms converges if and only if is partial sums are bounded above.

Examples

Determine the convergence or divergence of each of $\sum_{k=1}^{\infty} \frac{|\sin k|}{(k+1)!}$.
Note that each term in the sum is positive. We can use that $|\sin k| \leq 1$ to simplify what we are checking to

$$
\sum_{k=1}^{\infty} \frac{|\sin k|}{(k+1)!} \leq \sum_{k=1}^{\infty} \frac{1}{(k+1)!}
$$

If the partial sums of the second series are bounded above, we will know that the sum we are asked about converges by the bounded sum test. The $n^{t h}$ partial sum is

$$
\begin{aligned}
S_{n} & =\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\ldots+\frac{1}{(n+1)!} \\
& \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}} \leq 1
\end{aligned}
$$

Since this upper bound is a geometric series with $r=1 / 2$, we know that the original sum we were given converges to a number that is at most 1 .

2 Integral Test

If f is a continuous, positive, nonincreasing function on the interval $[1, \infty)$, then the infinite series

$$
\sum_{k=1} f(k)
$$

converges if and only if the improper integral

$$
\int_{1}^{\infty} f(x) d x
$$

converges.

Examples

Does $\sum_{k=1}^{\infty} \frac{3 k^{3}}{2+k^{4}}$ converge or diverge?
Since $\frac{3 x^{3}}{2+x^{4}}$ is positive, continuous, and nonincreasing on $[1, \infty)$, we can check the convergence of the integral

$$
\int_{1}^{\infty} \frac{3 x^{3}}{2+x^{4}} d x=\left.\frac{3}{4} \ln \left|2+x^{4}\right|\right|_{1} ^{\infty}
$$

which diverges, so the sum diverges.

3 -series Test

$\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ is called a p-series. It converges if $p>1$ and diverges if $p \leq 1$. The proof of this statement follows from the integral test for $p \geq 0$. For $p<0$, this follows from the $n^{\text {th }}$-term test.

Example

Does $\sum_{k=4}^{\infty} \frac{1}{k^{3}}$ converge or diverge?
This sum converges since $p=3>1$.

4 Approximating Errors

Let f be a positive, continuous, nonincreasing function on $[1, \infty)$, and let a_{n} be a sequence such that $a_{n}=f(n)$. Then, the error, E_{n} that we get by approximating the sum S by the first n terms of the series is

$$
E_{n}=S-S_{n}=a_{n+1}+a_{n+2}+a_{n+3}+\ldots<\int_{n}^{\infty} f(x) d x
$$

Example

Approximate the error made by approximating the series $\sum_{k=1}^{\infty} \frac{1}{k \sqrt{k}}$ by the sum of the first 9 terms.
First, note that the sum converges, since we can rewrite the exponent in the denominator as $3 / 2$. Then,

$$
\begin{aligned}
E_{9} & <\int_{9}^{\infty} x^{-3 / 2} d x \\
& =-\left.2 x^{-1 / 2}\right|_{9} ^{\infty} \\
& =\frac{2}{\sqrt{9}}=\frac{2}{3}
\end{aligned}
$$

