Section 9.3, Positive Series: The Integral Test

Homework: 9.3 #1-33 odds

1 Bounded Sum Test

A series Y a, of nonnegative terms converges if and only if is partial sums are bounded above.

Examples
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Note that each term in the sum is positive. We can use that [sink| < 1 to simplify what we are
checking to
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If the partial sums of the second series are bounded above, we will know that the sum we are asked
about converges by the bounded sum test. The n!* partial sum is
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Since this upper bound is a geometric series with » = 1/2, we know that the original sum we were
given converges to a number that is at most 1.

2 Integral Test

If f is a continuous, positive, nonincreasing function on the interval [1, c0), then the infinite series
> f(k)
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converges if and only if the improper integral
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converges.

Examples
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Does 3 ;_, 545« converge or diverge?

Since 2%:6;4 is positive, continuous, and nonincreasing on [1, 00), we can check the convergence of the
integral
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which diverges, so the sum diverges.



3 p-series Test

Y orey kip is called a p-series. It converges if p > 1 and diverges if p < 1. The proof of this statement
follows from the integral test for p > 0. For p < 0, this follows from the n*-term test.

Example
Does Y37, 7 converge or diverge?

This sum converges since p =3 > 1.

4 Approximating Errors

Let f be a positive, continuous, nonincreasing function on [1,00), and let a,, be a sequence such that
an = f(n). Then, the error, E, that we get by approximating the sum S by the first n terms of the
series is
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Example
Approximate the error made by approximating the series >~ k—\l/E by the sum of the first 9 terms.

First, note that the sum converges, since we can rewrite the exponent in the denominator as 3/2.
Then,

(oo}
E9</ 2732 da
9

= —9p1/2 b




